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Abstract: The Stokes boundary layer (SBL) is the oscillating flow above a flat plate. Its6

laminar flow becomes linearly unstable at a Reynolds number of Re = 𝑈0
√︁
𝑇0/𝜈 ≈ 2511,7

where𝑈0 is the amplitude of the oscillation, 𝑇0 is the period of oscillation, and 𝜈 is the fluid’s8
kinematic viscosity, but turbulence is observed subcritically for Re ≳ 700. The state space9
consists of laminar and turbulent basins of attraction, separated by a saddle point (the ‘edge10
state’) and its stable manifold (the ‘edge’). This work presents the edge trajectories for the11
transitional regime of the SBL. Despite linear dynamics disallowing the lift-up mechanism in12
the laminar SBL, edge trajectories are dominated by coherent structures as in other canonical13
shear flows: streaks, rolls, and waves. SBL structures are inherently periodic, interacting with14
the oscillating flow in a novel way: streaks form near the plate, migrate upward at a speed15
2
√
𝜋, and dissipate. A streak-roll-wave decomposition reveals a spatio-temporally evolving16

version of the Self-Sustaining Process (SSP): (i) rolls lift fluid near the plate, generating17
streaks (via the lift-up mechanism), (ii) streaks can only persist in regions with the same sign18
of laminar shear as when they were created, defining regions that moves upward at a speed19
2
√
𝜋, (iii) the sign of streak production reverses at a roll stagnation point, destroying the streak20

and generating waves, (iv) trapped waves reinforce the rolls via Reynolds stresses, (v) mass21
conservation reinforces the rolls. This Periodic SSP highlights the role of flow oscillations22
in sustaining transitional structures in the SBL, providing an alternative picture to ‘bypass’23
transition, which relies on pre-existing free stream turbulence and spanwise vortices.24

Key words:25

1. Introduction26

Oscillatory flows are ubiquitous in nature (Jensen et al. 1989; Spalart & Baldwin 1987),27
biomechanical systems (Ku 1997; Taylor & Draney 2004) and engineering applications28
(Adcock et al. 2021; Gatti & Quadrio 2016), with ongoing research including a particular29
focus on transition to turbulence in oscillatory boundary layers (Blennerhassett & Bassom30
2008; Biau 2016; Xiong et al. 2020; Blondeaux et al. 2021; Gong et al. 2022). The canonical31
oscillating flow is the Stokes Boundary Layer (SBL), the flow above a sinusoidally oscillating32
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flat plate. The transition to turbulence in this flow is complex (von Kerczek & Davis 1974;33
Blennerhassett & Bassom 2008; Mujal-Colilles et al. 2016; Blondeaux & Vittori 2021); the34

SBL is a subcritical flow that exhibits turbulent dynamics at Reynolds numbers Re = 𝑈0
√︁
𝑇0/𝜈35

(where𝑈0 is the velocity oscillation amplitude,𝑇0 is the oscillation period, and 𝜈 is the fluid’s36
kinematic viscosity) below the critical Reynolds number Re𝑐 ≈ 2511 at which the laminar37
solution becomes linearly unstable to normal mode perturbations (Blennerhassett & Bassom38
2002), although convective linear instability occurs below this critical value in domains with a39
large horizontal extent (Ramage et al. 2020; Pretty et al. 2021). The critical Reynolds number40
found by Blennerhassett & Bassom (2002) is based upon a Floquet analysis of perturbations41
growing over the whole oscillation cycle.42

Ozdemir et al. (2014) summarised several theoretical, experimental and numerical works43
on the SBL and categorised the flow into four regimes: (i) Laminar (Re < Re𝑐1), (ii) Disturbed44
Laminar (Re𝑐1 < Re < Re𝑐2), where some disturbances such as spanwise vortices are45
observed, but without enough growth to trigger transition, (iii) Intermittently Turbulent46
(Re𝑐2 < Re < Re𝑐3), where some turbulent features such as bursts of energy during the mid47
and late deceleration phases are observed, which laminarise during the early acceleration48
phase, and (iv) Turbulent (Re > Re𝑐3). Around the onset of the intermittently turbulent49
regime, Ozdemir et al. (2014) observed a self-sustaining transitional behaviour, and this has50
been described in terms of a ‘bypass’ transition in which streamwise streaks triggered by51
free stream turbulence grow, form hairpin vortices, and then eject a spanwise vortex back52
into the free stream, which subsequently breaks down to turbulence and reinitiates the cycle53
(Xiong et al. 2020; Gong et al. 2022). Mier et al. (2021) and Fytanidis et al. (2021) reported54
that this self-sustaining transitional behaviour is associated with a phase-lag between the55
wall-shear stress and the laminar velocity, with disturbances growing during the deceleration56
phase and decaying during the acceleration phase (see also Luo & Wu 2010), an observation57
in agreement with the transitional cycles observed in other, wall-bounded oscillating flows58
(Pier & Schmid 2017; Ebadi et al. 2019; Pier & Schmid 2021; Linot et al. 2024).59

Crucially, however, such a ‘self-sustaining’ bypass transition relies upon turbulent motions60
and strong spanwise vortices. This sets it apart from the coherent motions of the Vortex-61
Wave Interaction states (Hall & Smith 1991; Hall & Sherwin 2010), often realised as62
‘edge states’ controlling the transition to turbulence in steady wall–bounded shear flows63
(Skufca et al. 2006; Kim & Moehlis 2008; Schneider & Eckhardt 2006; Duguet et al. 2009;64
Schneider et al. 2010; Eaves & Caulfield 2015) which follow the Self-Sustaining Process65
(SSP) (Waleffe 1997) of streamwise vortices created via the lift-up mechanism (Landahl66
1980) and sustained by weak three-dimensional waves. From a dynamical systems point67
of view, laminar and turbulent flows can be seen as attractors in a high-dimensional state-68
space, whose basins of attraction are separated by a manifold termed the ‘edge of chaos’ (or69
simply the ‘edge’) (Skufca et al. 2006), containing local attractors known as ‘edge states’.70
Characterisation of these edge states offers an alternative view of the physics associated with71
transition to turbulence which is self-contained, omitting the need to invoke pre-existing free72
stream turbulence to initiate transition, and, in the case of steady shear flows, requiring only73
streamwise vortices. Furthermore, the mechanisms underlying such states are also known74
to control important processes in the fully turbulent flow (see e.g. Kawahara et al. 2012;75
Budanur et al. 2017).76

In steady wall-bounded shear flows, these edge states rely on the lift-up mechanism, a77
linear transient growth mechanism by which parcels of fluid are advected (‘lifted’) through78
a shear flow, for example taking high-speed fluid and moving it to a low-speed region,79
creating streamwise momentum defects. Continued advection leads to large transient growth80
over a long (O(Re)) timescale, and is responsible for producing large-amplitude (O(1))81
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streamwise streaks when realised at finite amplitude. A steady background shear allows the82
lift-up mechanism to accumulate momentum defects in fixed locations over a long period83
of time, and so it is often the linear mechanism with the largest, and longest sustained,84
growth (Butler & Farrell 1992) and hence is integral to the SSP (Waleffe 1997). However, in85
the SBL, the lift-up mechanism is not an optimal linear transient growth mechanism (Biau86
2016) since the laminar shear flow is periodically oscillating, preventing momentum defects87
from accumulating in a single location, and reversing sign every half-period. Instead, the88
Orr mechanism (Orr 1907) is dominant, which allows for moderate growth as spanwise89
vortices are tilted by the background shear over a short timescale. It is known that even90
small disruptions to the lift-up mechanism have the potential to significantly affect edge state91
dynamics (Eaves & Caulfield 2015).92

These observations raise the interesting question as to what self-sustaining mechanism(s)93
edge states in the SBL utilise to balance dissipation (relaminarisation) against instability94
(transition to turbulence). On the one hand, a traditional interpretation of the SSP as using95
the lift-up mechanism due to its optimal linear growth would potentially point to new, Orr-96
based edge states for the SBL. On the other hand, transitional SBL flows are observed to97
consist of streamwise streaks (Sarpkaya 1993; Costamagna et al. 2003) and so perhaps some98
nonlinearity associated with the edge state dynamics allows the lift-up mechanism enough99
‘time’ to create large-amplitude streaks. The most well-studied edge states have been steady,100
and so the different components of the SSP act all together at the same time, however in101
this second, lift-up based scenario, any realisation of the SSP in the SBL would evolve102
periodically in order to accommodate the alternating shear direction of the background flow,103
opening up the potential for components of the SSP to act sequentially. In order to make104
some connection with the bypass transition scenario, whatever mechanisms arise within the105
edge state dynamics should shed light upon how boundary layer ejections could be initiated106
without resorting to pre-existing turbulence.107

In this work, we compute edge trajectories in the transitional regime of the SBL and analyse108
their dynamics in order to determine the underlying physical mechanisms which sustain them.109
We demonstrate that the edge states are periodically evolving versions of the SSP, utilising110
the lift-up mechanism, and that a temporal interplay between the laminar shear and streak111
nonlinearity results in streak migration away from the wall (non-turbulent ejections) and112
sequential activation of different components of the flow. In §2 we present the equations of113
motion, the numerical model, and the edge tracking algorithm. In §3 we provide an overview114
of the edge trajectory dynamics, which are examined in closer detail in section §4 which115
presents a complete analysis of the Periodic Self-Sustaining Process (PSSP). Conclusions116
are drawn in §5.117

2. Methodology118

2.1. Equations of motion119

The Stokes boundary layer is the oscillatory flow above a flat plate, in which an oscillation120
of period 𝑇0 is driven either by a sinusoidal oscillation in the velocity of the plate itself (in121
the 𝑥-direction) of magnitude 𝑈0 or a sinusoidal oscillation of the pressure gradient above a122
stationary plate; in this work, we study the former, oscillating plate flow. These oscillations123
set up a boundary layer against the plate whose thickness is determined diffusively, leading124
to the characteristic length-scale 𝛿 =

√
𝜈𝑇0 in which 𝜈 is the kinematic viscosity of the fluid.125

We decompose the instantaneous velocity into the sum of a laminar component𝑼 = (𝑈, 0, 0)126
and a perturbation velocity field 𝒖 = (𝑢, 𝑣, 𝑤), such that 𝒖𝑡𝑜𝑡 = 𝑼 + 𝒖. Using index notation,127
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the dimensionless incompressible Navier–Stokes equations for this flow read128

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (2.1)129

𝜕𝑢𝑖

𝜕𝑡
+ Re

[
𝑈 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

+ 𝑢 𝑗

𝜕𝑈𝑖

𝜕𝑥 𝑗

+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

]
= − 𝜕𝑝

𝜕𝑥𝑖
+ 𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥 𝑗

, (2.2)130

where the Reynolds number is given by131

Re =
𝑈0

√
𝜈𝑇0
𝜈

= 𝑈0

√︂
𝑇0
𝜈
, (2.3)132

which follows the definition adopted by Biau (2016). We note that this definition of the133
Reynolds number is a factor of

√
𝜋 larger than that of von Kerczek & Davis (1974); Ozdemir134

et al. (2014) and others, and is a factor of 2
√
𝜋 larger than that of Blennerhassett & Bassom135

(2002); Ramage et al. (2020) and others; all values quoted here, including the critical linear136
stability threshold Re𝑐 ≈ 2511 have been converted to match (2.3). The boundary conditions137
are138

𝑢𝑡𝑜𝑡𝑖 = 𝛿1𝑖𝑈 (0, 𝑡) at 𝑦 = 0, (2.4)139

𝑢𝑡𝑜𝑡𝑖 → 0 as 𝑦 → ∞, (2.5)140

where 𝛿𝑖 𝑗 is the Kronecker delta.141
The laminar flow 𝑼 = (𝑈 (𝑦, 𝑡), 0, 0) is directed along the 𝑥-axis and varies in the vertical142

𝑦-direction. The laminar flow is the well-known solution to the Stokes second problem, and143
is given by144

𝑈 (𝑦, 𝑡) = cos(2𝜋𝑡 −
√
𝜋𝑦)𝑒−

√
𝜋𝑦 , (2.6)145

The laminar flow is periodic with period 𝑇 = 1, and it has a (time-)shift-reflect symmetry146

𝑈 (𝑦, 𝑡 + 𝑇/2) = −𝑈 (𝑦, 𝑡). (2.7)147

Local features of the laminar flow (such as maxima, minima, inflection points, etc.) move148
upward away from the wall at a constant speed of 2

√
𝜋.149

With this laminar flow, the boundary conditions for the perturbation velocity are150

𝑢𝑖 = 0 at 𝑦 = 0, (2.8)151

𝑢𝑖 → 0 as 𝑦 → ∞. (2.9)152

However, for numerical purposes a bounded domain is used, in which the streamwise 𝑥 and153
spanwise 𝑧 directions are periodic, and a large wall-normal extent 𝐿𝑦 is chosen, at which154
impenetrable and stress-free boundary conditions are applied,155

𝑣 = 0 and
𝜕𝑢

𝜕𝑦
=

𝜕𝑤

𝜕𝑦
= 0 at 𝑦 = 𝐿𝑦 . (2.10)156

A schematic representation of the oscillating wall problem is presented in figure 1.157

2.2. Numerical implementation and setup158

We solve equations (2.1–2.2) for the perturbation velocity 𝑢𝑖 with boundary conditions (2.8)159
and (2.10) using the DNS solver Diablo (Taylor 2008). This code employs pseudo-spectral160
methods to compute spatial derivatives and uses a third-order Runge–Kutta scheme for161
time integration, and a 2/3 de-aliasing rule is applied to deal with the nonlinear terms. The162
simulations are carried out in parallel using the MPI library.163
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Figure 1: Problem diagram for flow above an oscillating wall. The lateral boundaries (𝑥
and 𝑧) are periodic. In the wall-normal direction, the perturbation velocity satisfies the

no-slip condition, while the upper boundary is impenetrable and stress free.

The equations are solved in a rectangular domain of size 𝐿𝑥 = 𝐿𝑧 = 8.2 and 𝐿𝑦 = 10.0.164
The size of 𝐿𝑥 (and also 𝐿𝑧) is chosen to match the wavenumber of the largest transiently165
growing linear disturbance at Re = 1000 (Biau 2016). The periodic 𝑥 and 𝑧 directions are166
discretised using a uniform grid with 𝑁𝑥 = 64 and 𝑁𝑧 = 32 Fourier modes, respectively.167
Initial tests used the same resolution as Biau (2016), 𝑁𝑥 = 𝑁𝑧 = 128, but this was scaled168
back for efficiency since turbulent scales do not need to be resolved in order to accurately169
compute the much simpler edge trajectories, and there was no significant loss in accuracy170
found when doing so. The 𝑦 direction is discretised using 𝑁𝑦 = 241 grid points, which171
are stretched away from the wall to ensure an efficient and accurate representation of the172
structures near the wall. The results are insensitive to other values of 𝑁𝑦 around this choice.173
A narrower geometry with 𝐿𝑧 = 4.1 and 𝑁𝑧 = 16 is also briefly considered, and the resulting174
dynamics are discussed in the next section.175

2.3. Edge Tracking176

Trajectories along the edge manifold may be found by ‘edge tracking’ (Skufca et al. 2006;177
Toh & Itano 2003; Schneider et al. 2007; Kreilos et al. 2013), an iterative procedure in which178
trajectories of initial conditions either side of the edge are computed and bisected depending179
on how they evolve in time. To classify trajectories as leading to laminar or turbulent flow,180
we use the 𝐿2-norm of the perturbation velocity field as a proxy (𝐸 = 0 is the laminar state181
by construction):182

𝐸 (𝒖) = 1
𝑉Ω

∫
Ω

1
2
𝒖 · 𝒖 𝑑Ω =

1
𝑉Ω

∫
Ω

1
2
𝑢𝑖𝑢𝑖 𝑑Ω, (2.11)183

where Ω = [0, 𝐿𝑥) × [0, 𝐿𝑦) × [0, 𝐿𝑧) and 𝑉Ω = 𝐿𝑥𝐿𝑦𝐿𝑧 . Starting with a pair of initial184
conditions that lead to the laminar and turbulent states, and defining suitable upper and lower185
thresholds on 𝐸 (𝒖) for transition to turbulence (𝐸∗

𝑇
) and decay to the laminar state (𝐸∗

𝐿
), we186

can iteratively define new initial conditions that remain near the edge for long times. As the187
flow is oscillatory in nature, the threshold conditions are met if the average energy of the188
flow remains above or below these thresholds for a defined time window 𝑡𝑎𝑣𝑔.189

If at time 𝑡𝑛0 we have an initial condition that evolves towards turbulence, 𝒖𝑛,0
𝑇

, and an190

initial condition that evolves towards the laminar state, 𝒖𝑛,0
𝐿

, then a new initial condition at191
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Figure 2: Bisection algorithm scheme. Block 1 indicates that when the energy, averaged
over a time window of size 𝑡𝑎𝑣𝑔, is larger than 𝐸∗

𝑇
or smaller than 𝐸∗

𝐿
, then 𝜆 is scaled

down or up respectively. Block 2 shows that when two consecutive values of 𝜆 are closer
than Δ𝜆∗, a new starting point is chosen to reinitialise the bisection process. Block 3 shows
how the new starting point is chosen. The latest turbulent and laminar trajectories remain

nearby for an extended period, until the energy difference between them is larger than
Δ𝐸∗. The last time for which the energy difference is below Δ𝐸∗ is the new starting point.

this time, 𝒖𝑚
𝜆

, is defined by linear interpolation:192

𝒖𝑚
𝜆 = 𝒖𝑛,0

𝐿
+ 𝜆𝑚(𝒖𝑛,0

𝑇
− 𝒖𝑛,0

𝐿
). (2.12)193

Iterative bisection, enumerated by 𝑚, is performed on the parameter 𝜆 over the interval [0,1],194
which generates a set of initial conditions on the laminar and turbulent sides of the edge195
(𝜆 is increased if the trajectory from 𝒖𝑚

𝜆
decays to the laminar state, and decreased if it196

transitions to turbulence). As the bisection proceeds, the trajectories on either side of the197
edge spend longer periods of time close to the edge and close to each other. The first pair of198
initial conditions used to start the bisection process consisted of 𝒖0,0

𝑇
taken from a minimal199

seed trajectory (for the definition of a minimal seed, see Kerswell 2018) as it approached200
the edge state on the turbulent side of the edge manifold (minimal seeds in this problem will201
be reported at a later date), along with 𝒖0,0

𝐿
= 0, the laminar flow state. Results using an202

alternative initialisation with 𝒖0,0
𝑇

taken as a random sample of the turbulent flow did not203

show any qualitative difference; the former option for 𝒖0,0
𝑇

was chosen when generating a204
long edge trajectory, owing to efficiencies associated with initialising the algorithm already205
nearby to the edge.206

Once the change in 𝜆 between two consecutive iterations is less than a threshold Δ𝜆∗,207
it is no longer efficient to continue bisecting between the original two initial conditions in208
(2.12) to track the edge. Instead, a new pair of laminar and turbulent initial conditions for209
use in (2.12) are generated from the trajectories on either side of the edge. Letting 𝑚𝐿 and210
𝑚𝑇 be the number of initial conditions found on the laminar and turbulent sides of the edge211
respectively, 𝒖𝑛,𝑚𝐿

𝐿
is the most recently found initial condition on the laminar side of the212

edge, with trajectory 𝒖𝑙𝑎𝑚(𝑡), and 𝒖𝑛,𝑚𝑇

𝑇
is the most recently found initial condition on the213

turbulent side of the edge, with trajectory 𝒖𝑡𝑢𝑟𝑏 (𝑡). We then set a new initial time 𝑡𝑛+1
0 = 𝑡∗214

and new laminar and turbulent initial conditions for use in (2.12) as 𝒖𝑛+1,0
𝐿

= 𝒖𝑙𝑎𝑚(𝑡∗) and215
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Figure 3: (a) Kinetic energy of the different trajectories bisected to follow the edge. The
first (transient) 16 time units of edge tracking are omitted. The red trajectories lead to
turbulence and the teal ones relaminarise. The infered edge trajectory shown with a

dashed black line. The thresholds for classifying trajectories as laminar (𝐸∗
𝐿

) and turbulent
(𝐸∗

𝑇
) are marked with horizontal dashed lines. The time window over which the energy is

averaged is shown near 𝑡 = 22. (b) A detailed version of (a) for 23.5 < 𝑡 < 28.

𝒖𝑛+1,0
𝑇

= 𝒖𝑡𝑢𝑟𝑏 (𝑡∗), where 𝑡∗ is the last time for which |𝐸 (𝒖𝑙𝑎𝑚(𝑡)) − 𝐸 (𝒖𝑡𝑢𝑟𝑏 (𝑡)) | < Δ𝐸∗.216

Different averaging times and threshold values were tested and 𝑡𝑎𝑣𝑔 = 0.5, Δ𝜆∗ = 10−4,217
Δ𝐸∗ = 10−6, 𝐸∗

𝐿
= 10−4, and 𝐸∗

𝑇
= 10−3 showed to be suitable for achieving an accurate218

representation of flow dynamics in the vicinity of the edge. These values were determined219
during the initial stages of investigating the edge trajectory; 𝐸∗

𝑇
was initially set a little below220

the turbulent average value (which is readily estimated from a single turbulent simulation),221
and 𝐸∗

𝐿
was set very low, at 10−8. These initial values allowed for a short section of edge222

trajectory to be computed, after which the thresholds were adjusted for efficiency to more223
closely sandwich the observed edge properties. The values were regularly reviewed to ensure224
that they were not interfering with the computation of the edge trajectory itself. A schematic225
representation of the bisection and start time shifting procedure is presented in figure 2.226

3. Edge Tracking Results227

Following the procedure described in section 2.3, a set of edge trajectories was generated228
for the baseline simulation, whose energies 𝐸 (𝒖) are shown in figure 3. The results show229
that, near the edge, the energy is oscillatory with a dominant frequency of 𝑇/2 caused by230
the back-and-forth forcing of the wall (see figure 3 (b)). However, the energy on the edge is231
not periodic (see figure 3 (a)), indicating that the edge state is not a simple periodic orbit,232
but rather a chaotic saddle, albeit of a strong oscillatory nature. A total simulated time of233
approximately 50 periods allows for a detailed description of the dynamics on the edge. Here234
we focus on 𝑡 > 16, after the edge trajectory has settled onto the edge state.235

To provide a better understanding of the energy dynamics, an energy evolution equation is236
derived by projecting (2.2) onto the perturbation velocity field 𝑢𝑖 to obtain the local kinetic237
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Figure 4: (a) Time-series of production rate (red) and dissipation rate (teal) for
20 < 𝑡 < 30. (b) A detailed plot for 21 < 𝑡 < 22 showing that within half a period, there is

a production-dominated (P-D, red) stage and a dissipation-dominated (D-D, teal) stage.
The right-hand axis plots the magnitude of the wall velocity 𝑈𝑏 = 𝑈 (0, 𝑡) (grey dashed).
The sign of the wall acceleration, 𝑑 |𝑈𝑏 (𝑡) |/𝑑𝑡, is shown to correspond with the P-D and

D-D stages. The times of the six snapshots in figure 5 are indicated with dotted lines.

energy density defined as 𝑒 = 1
2𝑢𝑖𝑢𝑖 . The energy transport equation reads238

𝜕𝑒

𝜕𝑡
= −𝑢 𝑗

𝜕𝑝

𝜕𝑥 𝑗

− Re
[
𝑢𝑖

𝜕

𝜕𝑥 𝑗

(
𝑢𝑖𝑈 𝑗 + 𝑢 𝑗𝑈𝑖 + 𝑢 𝑗𝑢𝑖

) ]
+ 𝜕2𝑒

𝜕𝑥 𝑗𝜕𝑥 𝑗

− 𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

. (3.1)239

Defining the average operator ⟨·⟩𝑥𝑖 as ⟨𝑎⟩𝑥𝑖 = 1
𝐿𝑥𝑖

∫ 𝐿𝑥𝑖

0 𝑎 𝑑𝑥𝑖 , where 𝑖 = 1, 2, 3 for 𝑥, 𝑦 and240

𝑧 respectively, the total energy 𝐸 is given by 𝐸 = ⟨𝑒⟩𝑥,𝑦,𝑧 ≡ ⟨𝑒⟩Ω. Integrating (3.1) over241
the whole domain, taking into account the boundary conditions and the incompressibility242
condition (2.1) leads to the global energy balance equation243

d𝐸
d𝑡

=

〈
−Re 𝑢𝑣

𝜕𝑈

𝜕𝑦

〉
Ω

−
〈
𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

〉
Ω

≡ P(𝑡) − D(𝑡), (3.2)244

where P(𝑡) is the instantaneous production rate, and D(𝑡) is the instantaneous dissipation245
rate. The production term has the general form of a stress (-Re 𝑢𝑣) acting on a strain rate246
(𝜕𝑈/𝜕𝑦), from which the energy transfer process from the laminar velocity gradient (induced247
by the oscillation) to the perturbation velocity field is clear. Furthermore, the oscillation248
period of 𝑇/2 observed in the energy is in agreement with the period 𝑇 of 𝜕𝑈/𝜕𝑦 provided249
that 𝑢𝑣 is also periodic with period 𝑇 (and zero mean).250

Figure 4 plots time series of the production and dissipation, and shows that they are in251
phase, but that there are stages within the 𝑇/2 cycle when production is dominant and stages252
when the dissipation is dominant. This observation is in broad agreement with previous work253
on transitional behaviour in the Stokes layer, which indicates a growth of flow disturbances254
during the deceleration phase (which is, accordingly, a production-dominated phase) and255
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their decay during the acceleration phase (Ozdemir et al. 2014; Luo & Wu 2010). A closer256
comparison between these observations and the transitional regime of Ozdemir et al. (2014)257
is made in §4.4. The behaviour of the edge trajectory suggests the presence of an internal258
self-sustained dynamics that balances the energy transfer among structures in the flow. To259
further understand the dynamics along the edge, figure 5 plots snapshots of ⟨𝑒⟩𝑥 on the 𝑦-𝑧260
plane at times 𝑡1 = 21.11, 𝑡2 = 21.25, 𝑡3 = 21.35, 𝑡4 = 21.50, 𝑡5 = 21.58, and 𝑡6 = 21.67,261
which cover a total time just over 𝑇/2.262

Figures 5(a-d) (times 𝑡1 to 𝑡4) show a well-defined region in the 𝑦-𝑧 plane that concentrates263
most of the kinetic energy of the flow, which modifies its shape and migrates upwards over264
time. This region is located around (and just above) the instantaneous location of a local265
maximum in the absolute value of laminar shear, |𝜏ℓ | = |𝜕𝑈/𝜕𝑦 |, and rises with it. We266
label this location 𝑦min

𝜏ℓ
(given that 𝜕𝑈/𝜕𝑦 < 0). In figure 5(d) the region of concentrated267

kinetic energy reaches a height 𝑦 ≈ 2 and begins to spread out. After 𝑡 = 𝑡4 a new region268
of concentrated energy is formed near the wall, seen in figures 5(e,f) (times 𝑡5 and 𝑡6), and269
the process repeats, although this new region aligns with the location of maximal positive270
laminar shear, labelled 𝑦max

𝜏ℓ
. Figure 5(g) plots the vertical distribution of the 𝑥–𝑧 averaged271

energy ⟨𝑒⟩𝑥,𝑧 over an extended period of time, demonstrating that this basic 𝑇/2 cycle272
repeats indefinitely, with flow structures periodically forming a little above the plate, rising,273
and dissipating around 𝑦 ≲ 3.274

The location of the flow structures in the spanwise direction varies sporadically in time,275
as can be seen in figure 5(h), which shows the spanwise distribution of the 𝑥–𝑦 averaged276
energy ⟨𝑒⟩𝑥,𝑦 . The time window studied in figures 5(a-f) contains flow structures located in277
a region around the centre of the spanwise domain, while the time window between 𝑡 = 23278
and 𝑡 = 26 contains the same structures located around the (periodic) spanwise boundaries.279
This ‘jumping’ of the structure by an amount 𝐿𝑧/2 is characteristic of a spatially localised280
structure which nevertheless feels the influence of its periodically located neighbours, owing281
to the domain size 𝐿𝑧 being too small for the structure to evolve entirely freely, but large282
enough for it to appear essentially isolated for extended periods (Khapko et al. 2016). These283
jumps are associated with elevated energy 𝐸 during a single half-period 𝑇/2 in figure 3,284
as there are essentially two structures side by side, and are distributed randomly in time. If285
the domain size 𝐿𝑧 were large enough, then the jumps would presumably cease since the286
structure can evolve entirely independently, although this may instead induce a spanwise287
drift (Khapko et al. 2013). Nevertheless, we shall treat the structure as an essentially isolated288
object in the following analysis, as this is a reasonable approximation for much of the flow289
evolution between jumps.290

To provide a more detailed characterisation of the three-dimensional nature of these291
structures, figures 6(a-d) plot isosurfaces of high-speed streaks (𝑢𝑆𝑚𝑎𝑥 = 0.5max{𝑢}) and292
low-speed streaks (𝑢𝑆𝑚𝑖𝑛 = 0.5min{𝑢}) at times 𝑡2 to 𝑡5. The 𝑥-averaged energy ⟨𝑒⟩𝑥 is293
shown on the plane 𝑧 = 0, and the height of maximal energy (𝑦max{⟨𝑒⟩𝑥 }) is plotted on the294
planes 𝑥 = 0 and 𝑧 = 𝐿𝑧 . The instantaneous laminar flow profile is shown on the planes295
𝑧 = 0 and 𝑧 = 𝐿𝑧 (shifted to be centred at 𝑥 = 𝐿𝑥/2) for reference. These figures show296
that the streamwise structures are streak-like, and instantaneously (at least visually) carry the297
majority of the energy of the perturbed flow, as in the self-sustaining process (Hall & Smith298
1991; Waleffe 1997). Indeed, the streamwise velocity is O(1) within these streaks whilst299
typical cross-stream velocities are O(10−3). Within a single half-period 𝑇/2 (times 𝑡1 to 𝑡3),300
a single streak with 𝑢 < 0 dominates the perturbation energy. In the following half-period301
(𝑡4) the streak is replaced by one of the opposite sign (𝑢 > 0) and the dynamics of the new302
streak are essentially the same as the first. This goes some way to explaining the apparent𝑇/2303
period within the energy budget; the flow itself has a period of 𝑇 , but the reflection symmetry304
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Figure 5: (a-f) Snapshots of ⟨𝑒⟩𝑥 in the 𝑦-𝑧 plane for six times 𝑡1 = 21.11, 𝑡2 = 21.25,
𝑡3 = 21.35, 𝑡4 = 21.50, 𝑡5 = 21.58, and 𝑡6 = 21.67. The right column of each snapshot
shows the corresponding instantaneous laminar velocity 𝑈 (teal) and normalised shear

(2𝜋)−1/2 (𝜕𝑈/𝜕𝑦) (red) with black dots at its maximum and minimum. (g) Time-evolution
of the average vertical distribution of energy ⟨𝑒⟩𝑥,𝑧 and its instantaneous maximum (red

dashed). (h) Average spanwise distribution of energy ⟨𝑒⟩𝑥,𝑦 .

after a time 𝑇/2 results in pre-periodic motions that are not apparent in positive-definite305
quantities such as the energy.306

Figure 6(e) shows the instantaneous vertical distribution of the 𝑥–𝑧-averaged kinetic307
energy, ⟨𝑒⟩𝑥,𝑧 , along with the locations of its global maximum and oblique lines of slope308

Rapids articles must not exceed this page length
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Figure 6: (a-d) Snapshots of high-speed (𝑢𝑆𝑚𝑎𝑥 = 0.5max{𝑢}, purple) and low-speed
(𝑢𝑆𝑚𝑖𝑛 = 0.5min{𝑢}, orange) streamwise velocity isosurfaces, at times 𝑡 = 𝑡2, 𝑡3, 𝑡4, and
𝑡5. Streamwise-averaged perturbation energy ⟨𝑒⟩𝑥 is plotted on the plane 𝑧 = 0. The

instantaneous height of maximum perturbation energy (𝑦max{⟨𝑒⟩𝑥 }) is plotted on the
planes 𝑥 = 0 and 𝑧 = 𝐿𝑧 with a dotted line. The instantaneous laminar flow is plotted on

the planes 𝑧 = 0 and 𝑧 = 𝐿𝑧 (centred at 𝑥 = 𝐿𝑥/2). (e) Time evolution of the 𝑥, 𝑧-averaged
perturbation energy ⟨𝑒⟩𝑥,𝑧 , its instantaneous global maximum (continuous line), and

oblique lines (dashed) with slope 2
√
𝜋. Dotted teal and red lines indicate locations of zero

laminar shear, labelled 𝑦+ and 𝑦− , defined in section 4.1.

2
√
𝜋, showing that the laminar flow propagation speed controls the spatial location of these309

nonlinear structures on the edge. The no-slip boundary condition (𝒖 = 0 at 𝑦 = 0) prevents310
the streaks from forming at the wall, and instead they begin to form around 𝑦 ≈ 1/4 and311
reach substantial amplitude at 𝑦 ≈ 1. As the streaks migrate upwards, they begin to lose a312
substantial amount of energy around 𝑦 ≈ 2 and essentially do not propagate into 𝑦 ≳ 3 (this313
will be demonstrated explicitly in the following section). Although the laminar flow, and314
hence also the energy production rate P, decays exponentially away from the wall, there is315
nothing inherently preventing these streaks from continuing to propagate to 𝑦 → ∞ while316
viscously decaying through D; therefore, there must be some further dynamics contained317
within the other flow components that essentially cut-off the streaks beyond a maximum318
height. The exact physical mechanisms driving these observations will be explained in the319
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Figure 7: (a) Snapshot at 𝑡 = 20.35 of high and low speed streaks, as in figure 6 for the
narrower domain. (b) The corresponding perturbation energy from edge tracking.

following section. A supplementary movie accompanying figure 6 is available, which shows320
the streak dynamics and includes a jump of the streaks from the centre of the domain to the321
spanwise boundaries.322

Edge tracking was also performed at a higher Reynolds number of Re = 1200 using323
the same computational setup, and the dynamics were quantitatively similar to those at324
Re = 1000. Due to the moderate Reynolds numbers used and the small gap between them,325
no clear scaling of flow structures with Re was observed. Another set of edge tracking results326
were computed in a narrower domain with half the spanwise extent (𝐿𝑧 = 4.1, using the327
same spatial and temporal resolution) for Re = 1000, to see whether or not a truly periodic328
edge state could be identified. However, the edge trajectory in this case is significantly more329
chaotic than in the wider domain, and no period of nearly periodic motion can be identified330
for further analysis of the flow structures. Figure 7 shows a snapshot of the flow in the narrow331
domain, from which it is seen that the structures are similar to those of the wider domain332
discussed above. However, the flow is too confined, and alternating signed streaks ‘compete’333
for space as they form and migrate upwards, and a consistent pattern of dynamics does not334
clearly emerge. The next section will focus entirely on the wide domain with Re = 1000 and335
demonstrate that rolls in the 𝑦–𝑧 plane, which sustain the streamwise streaks during their336
migration, span the entire domain, and it is likely that these rolls do not have enough room337
in the narrow domain to establish a sustained periodic flow.338
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4. The Periodic Self Sustained Process (PSSP)339

To fully understand the streak dynamics, including their creation, migration, growth, and340
sudden decay, we analyse the effect of wall-oscillation on the self sustaining process, by341
decomposing the full perturbation velocity into its streak, roll and wave (SRW) components.342
The average of the velocity field over the 𝑥-direction, U = ⟨𝒖⟩𝑥 , can be decomposed343
into streak and roll components as U = U𝑠 + U𝑟 ≡ (U, 0, 0)𝑠 + (0,V,W)𝑟 . The full344
perturbation velocity field can be expressed as345

𝒖 = U𝑠 + U𝑟 + 𝒖̂ = (U, 0, 0)𝑠 + (0,V,W)𝑟 + (𝑢̂, 𝑣̂, 𝑤̂)𝑤 (4.1)346

where the subscript 𝑠 denotes the streak velocity, the 𝑟 subscript denotes the roll velocity, and347
the 𝑤 subscript and hat decoration denotes the remaining part of the fully three-dimensional348
velocity field. Introducing this decomposition into (2.2), we obtain momentum equations for349
U, V, and W:350

𝜕U
𝜕𝑡

+ Re U 𝑗

𝜕U
𝜕𝑥 𝑗

= −Re

{
V 𝜕𝑈

𝜕𝑦
+
𝜕

〈
𝑢̂𝑢̂ 𝑗

〉
𝑥

𝜕𝑥 𝑗

}
+ 𝜕2U
𝜕𝑥 𝑗𝜕𝑥 𝑗

, (4.2)351

𝜕V
𝜕𝑡

+ Re U 𝑗

𝜕V
𝜕𝑥 𝑗

= −𝜕𝒫

𝜕𝑦
− Re

𝜕
〈
𝑣̂𝑢̂ 𝑗

〉
𝑥

𝜕𝑥 𝑗

+ 𝜕2V
𝜕𝑥 𝑗𝜕𝑥 𝑗

, (4.3)352

𝜕W
𝜕𝑡

+ Re U 𝑗

𝜕W
𝜕𝑥 𝑗

= −𝜕𝒫

𝜕𝑧
− Re

𝜕
〈
𝑤̂𝑢̂ 𝑗

〉
𝑥

𝜕𝑥 𝑗

+ 𝜕2W
𝜕𝑥 𝑗𝜕𝑥 𝑗

, (4.4)353

where 𝒫 ≡ ⟨𝑝⟩𝑥 is the the 𝑥-averaged pressure. Mass conservation within the SRW354
decomposition reads355

𝜕V
𝜕𝑦

+ 𝜕W
𝜕𝑧

= 0 and
𝜕𝑢̂𝑖

𝜕𝑥𝑖
= 0, (4.5)356

and momentum equations for the wave components 𝒖̂ can be obtained by subtracting (4.2–4.4)357
from (2.2), though the resulting equations are not needed here.358

4.1. Cycle description and energy transport dynamics359

To unveil the dynamics among streaks, rolls and waves, we analyse the evolution of the360
energy within the SRW-decomposition. Defining the streak energy density as E𝑠 ≡ 1

2U
2,361

the roll energy density as E𝑟 ≡ 1
2 (V

2 + W2), and the 𝑥-averaged wave energy density as362

Ê ≡ ⟨ 1
2 |𝒖̂ |

2⟩𝑥 , we have by construction that the 𝑥-averaged total perturbation energy density363

E ≡ ⟨𝑒⟩𝑥 is given by E = E𝑠 +E𝑟 + Ê, given that the cross-terms vanish. The SRW equations364
(4.2–4.4) may be converted into evolution equations for the streak energy density and roll365
energy density, and an equation for the 𝑥-averaged wave energy density can be constructed366

by observing that 𝜕Ê
𝜕𝑡

= 𝜕E
𝜕𝑡

− 𝜕E𝑠

𝜕𝑡
− 𝜕E𝑟

𝜕𝑡
. These equations are presented in appendix A.367

The energy density evolution equations contain flux terms which move energy within the368
domain, in addition to production from the laminar flow, transfer between rolls, streaks and369
waves, and dissipation terms. To better elucidate the key mechanisms sustaining the motion,370
we integrate the equations over the whole domain to give evolution equations for the total371
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streak 𝐸𝑠 = ⟨E𝑠⟩Ω, roll 𝐸𝑟 = ⟨E𝑟 ⟩Ω, and wave 𝐸̂ = ⟨Ê⟩Ω energies:372

d𝐸𝑠

d𝑡
= ⟨Pℓ→𝑠⟩Ω − ⟨T𝑠→𝑤⟩Ω − ⟨D𝑠⟩Ω, (4.6)373

d𝐸𝑟

d𝑡
= ⟨T𝑤→𝑟 ⟩Ω − ⟨D𝑟 ⟩Ω, (4.7)374

d𝐸̂
d𝑡

= ⟨Pℓ→𝑤⟩Ω + ⟨T𝑠→𝑤⟩Ω − ⟨T𝑤→𝑟 ⟩Ω − ⟨D𝑤⟩Ω. (4.8)375

The production (P), transfer (T ), and dissipation (D) terms are also given in appendix A.376
Their indices indicate the source and the destination of the transferred energy (in the case377
of P and T ) or the component which is dissipating energy (in the case of D), where the378
laminar flow is denoted by ℓ. For example, the term379

Pℓ→𝑠 ≡ −ReUV 𝜕𝑈

𝜕𝑦
(4.9)380

corresponds to the production of perturbation energy by the laminar flow, creating streaks381
U (and mediated by the vertical roll component V). This is the process that creates streaks382
via the so-called lift-up mechanism, which forms part of the Self-Sustaining Process (SSP)383
(Waleffe 1997). The volume-average of each energy component in equations (4.6–4.8) are384
plotted in figure 8 along with the total energy 𝐸 whose evolution in terms of these components385
is386

d𝐸
d𝑡

= P(𝑡) − D(𝑡) ≡ (⟨Pℓ→𝑠⟩Ω + ⟨Pℓ→𝑤⟩Ω) − (⟨Dℓ⟩Ω + ⟨D𝑟 ⟩Ω + ⟨D𝑤⟩Ω). (4.10)387

Figure 8 clearly shows a scale difference in energy and energy transfer rate terms between388
rolls, streaks and waves. Figure 8(a) shows that the most energetic component is the streaks,389
with energy that is almost indistinguishable from the total energy. The second most energetic390
structures are the waves, which have an average energy around one and a half orders of391
magnitude smaller than the streaks, and the rolls are the least energetic structures with392
average energy around two orders of magnitude smaller than the streaks. This hierarchy is393
as expected from vortex-wave interaction theory (Hall & Smith 1991), albeit with relative394
sizes that don’t match the high Reynolds number asymptotic theory, owing to the relatively395
modest Reynolds number used here (see Hall & Sherwin 2010).396

Figure 8(b) shows that the scale differences persist among the energy transfer terms. The397
largest two terms in the energy budget are the production term transferring energy from398
the laminar flow to the streaks through the lift-up mechanism, ⟨Pℓ→𝑠⟩Ω, and the streak399
dissipation, ⟨D𝑠⟩, which dissipates most of this energy, and is almost exactly in phase with400
and of the same magnitude as ⟨Pℓ→𝑠⟩Ω. The small amount of streak energy gained from401
production which is not dissipated is transferred to the waves via ⟨T𝑠→𝑤⟩Ω. This transfer402
rate is around an order of magnitude smaller than the streak production and dissipation,403
and is responsible for powering the smaller amplitude waves. In turn, this energy transfer404
to the waves is balanced almost entirely by the wave dissipation ⟨D𝑤⟩Ω, which is of a405
similar magnitude as ⟨T𝑠→𝑤⟩Ω and in phase with it. The waves receive little energy via406
production from the laminar flow, ⟨Pℓ→𝑤⟩Ω. This production term oscillates somewhat407
randomly between positive and negative values (backscatter onto the laminar flow) and408
essentially averages to zero over long periods of time; the laminar flow is stable to linear409
waves at this Reynolds number (and in this geometry). This production term essentially plays410
no meaningful role in the wave dynamics as its average magnitude is around an order of411
magnitude smaller than either the transfer to the waves from the streaks, ⟨T𝑠→𝑤⟩Ω, or the412
wave dissipation, ⟨D𝑤⟩Ω. The waves lose a small amount of energy to the rolls, via the413
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Figure 8: (a) Time series of energy components 𝐸𝛼: 𝐸 (black), 𝐸𝑠 (red), 𝐸𝑟 (green), and
𝐸̂ (teal) . (b) Time series of individual production, transfer, and dissipation terms (labelled
¤𝐸𝛼→𝛽): ⟨Pℓ→𝑠⟩Ω (light red circles), ⟨Pℓ→𝑤⟩Ω (dark red squares), ⟨T𝑠→𝑤⟩Ω (light green
upwards triangles), ⟨T𝑤→𝑟 ⟩Ω (dark green diamonds), ⟨D𝑠⟩Ω (dark teal crosses), ⟨D𝑟 ⟩Ω
(mid teal filled circles), and ⟨D𝑤⟩Ω (light teal downwards triangles). (c-d) The same as

(a-b) for 20.75 ⩽ 𝑡 ⩽ 21.9. Dashed sections of ⟨Pℓ→𝑤⟩Ω are negative values.

transfer term ⟨T𝑤→𝑟 ⟩Ω, which is also an order of magnitude smaller than either ⟨T𝑠→𝑤⟩Ω or414
⟨D𝑤⟩Ω. The transfer from the waves to the rolls, ⟨T𝑤→𝑟 ⟩Ω, is of the same magnitude and415
nearly in phase with the roll dissipation, ⟨D𝑟 ⟩Ω.416

A closer visualisation of the time series is plotted in figures 8(c,d) for 20.8 ⩽ 𝑡 ⩽ 22.417
In 8(c), it can be seen that the reduction in total streak energy leads to an increment in the418
total wave energy, which in turn leads to an increment in the total roll energy. The ‘cascade’419
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Figure 9: Schematic representation of the energy transfer cycle for the Periodic
Self-Sustaining Process (PSSP). The input of energy comes from the laminar flow formed
from the plate oscillation. This is transferred to the streaks via the lift-up mechanism due

to the action of the rolls (the role of the roles is purely advective; no energy is transferred).
Streaks dissipate most of the energy and what remains is is transferred to the waves

through linear instability. Waves dissipate most of this energy and transfer what remains to
the rolls through Reynolds stresses and the cycle repeats.

process is indicated with a tri-coloured arrow in the plot, and indicates that the energy420
transfers first between the streaks and the waves, and second between the waves and the rolls.421
Furthermore, as the rolls begin to gain energy, there is a subsequent increase in the streak422
energy, as expected from the lift-up mechanism, and the cycle repeats. In summary, each423
flow component receives and loses the majority of its energy from a single source, as in the424
SSP of Waleffe (1997), but the periodic nature of the structures presented here more readily425
reveals the flow of energy through the system than in other, steady, realisations of the SSP.426
Additionally, it is often not made explicit that most of the energy at every step of the SSP is427
dissipated, with only a little being transferred to the next part of the cycle; the largest sink428
of energy is the streaks and the smallest is the rolls. This cycle is presented schematically in429
figure 9, which echoes the well-known figure of (Waleffe 1997), but includes energy sinks430
(dissipation) and indicates the main flow of energy using different pathway thicknesses and431
circle sizes for each component of the flow.432

This view of the global energies and energy transfer rates does not provide any information433
on the mechanistic flow processes and flow structures involved in this cycle. It also does not434
explain exactly how the flow manages to organise itself periodically, for example why the435
nonlinear streaks move upward at a speed dictated by the linear laminar flow, why they stop436
after a finite distance, and how the waves and rolls manage to create further streaks close to437
the wall. An explanation based upon the spatial evolution of the various flow components438
and spatial distribution of the energy transfer rates during the cycle is needed.439
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4.2. Streak and roll dynamics440

Figure 10 shows the distribution in the 𝑦–𝑧 plane of the energy transfer components Pℓ→𝑠,441
D𝑠, T𝑤→𝑟 , and D𝑟 , which are responsible for supplying and dissipating energy within the442
streaks and rolls, at the times 𝑡1, 𝑡2, 𝑡3, and 𝑡4 indicated in figure 8(c,d). Overlain on each panel443
are instantaneous roll streamlines and contours of high streak energy (E𝑠 ⩾ 0.25 maxΩ {E𝑠}).444
The laminar velocity and (scaled) shear profiles are displayed in the right column of the plot445
to relate the stage of the Periodic Self-Sustaining Process (PSSP) with the stage of the wall446
oscillation. These profiles are plotted alongside the normalised strain-rate magnitude of the447
rolls, whose magnitude is defined as448

|S| = Re

√√√
2

[(
𝜕V
𝜕𝑦

)2
+ 1

2

(
𝜕V
𝜕𝑧

+ 𝜕W
𝜕𝑦

)2
+

(
𝜕W
𝜕𝑧

)2
]
, (4.11)449

which is normalised via |S∗ | = |S|/maxΩ {S}.450
The roll streamlines in figure 10 show that the overall shape of the rolls is persistent451

throughout the time interval 𝑡1 ⩽ 𝑡 ⩽ 𝑡4, forming recirculation cells of O(1) size. These cells452
only slightly modify their shape over time, remaining located in the same areas throughout the453
cycle; their magnitude alone oscillates in time. They form a narrow channel around 𝑧 ≈ 𝐿𝑧/2454
of upward roll velocity, and the streaks form, grow, and migrate upward in this channel. The455
channel ends at a stagnation point (in the 𝑦–𝑧 plane) around 𝑦 = 𝑦𝑆𝑃 ≲ 3 which appears to456
present a barrier for the upward migrating streak. The roll velocity is horizontal away from457
the stagnation point at (𝑦, 𝑧) ≈ (𝑦𝑆𝑃 , 𝐿𝑧/2) and gradually turns upward, or downward back458
towards the wall, at the spanwise extremities of the domain.459

It is apparent from the roll structure that the streaks reside largely in a region for which460
V > 0 around 𝑧 = 𝐿𝑧/2 below the stagnation point at 𝑦 = 𝑦𝑆𝑃 . In order for the streak461
production rate Pℓ→𝑠 = −𝑅𝑒UV𝜕𝑈/𝜕𝑦 to be positive in this region, we therefore require462
that the combination U𝜕𝑈/𝜕𝑦 < 0 since the sign of V is fixed. As such, a positive streak463
(U > 0) can only grow when the laminar shear is negative (𝜕𝑈/𝜕𝑦 < 0) and vice versa. This464
observation, along with the fact that the laminar flow 𝑈 (𝑦, 𝑡) is periodic, and that its features465
propagate upward at a speed 2

√
𝜋, goes some way to explaining the streak migration.466

To make this notion precise, we detail key features of the laminar profile. Heights with zero467
laminar shear are denoted 𝑦± such that the laminar shear transitions from negative to positive468
through 𝑦+ (i.e. 𝜕2𝑈/𝜕𝑦2 |𝑦=𝑦+ > 0) and vice versa. Locations of maximum and minimum469
laminar shear are denoted 𝑦∗±. This notation is illustrated in figure 11. We introduce the cycle470
time 0 ⩽ 𝜉 < 1, where the total time is 𝑡 = 𝑘𝑇 + 𝜉 with 𝑇 = 1 and 𝑘 an integer, and consider471
the evolution of 𝑦±(𝜉) and 𝑦∗±(𝜉). A laminar shear minima appears at the wall when 𝜉 = 0472
and for 0 ⩽ 𝜉 < 1 is located at 𝑦∗− (𝜉) = 2

√
𝜋𝜉. After half a cycle, at 𝜉 = 𝑇/2 = 1/2, a laminar473

shear maxima appears at the wall and for 1/2 ⩽ 𝜉 < 1 is located at 𝑦∗+(𝜉) =
√
𝜋(2𝜉 − 1).474

Above the wall at the beginning of the cycle, the laminar shear changes sign at 𝑦+ = 3
√
𝜋/4.475

As time advances, this location of zero shear is given by 𝑦+(𝜉) =
√
𝜋(2𝜉 + 3/4). When476

𝜉 = 1/8, another location where the laminar shear changes sign appears at the wall, and for477
1/8 ⩽ 𝜉 < 1 is located at 𝑦− (𝜉) =

√
𝜋(2𝜉 − 1/4). When 𝜉 = 5/8, a final zero shear location478

appears at the wall and its location is given by 𝑦+(𝜉) =
√
𝜋(2𝜉 − 5/4).479

These locations are illustrated at four times within the cycle in figure 11. They divide the480
region around 𝑧 ≈ 𝐿𝑧/2 below the stagnation point into locations where the production term481
Pℓ→𝑠 can create positive streaks (𝜕𝑈/𝜕𝑦 < 0, coloured pink) and locations where it can482
create negative streaks (𝜕𝑈/𝜕𝑦 > 0, coloured teal). These regions are also overlain on the483
energy transfer term distributions and laminar flow profiles in figure 10. The schematics in484
figure 11 make a further distinction within each region; for a substantial production term we485
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Figure 10: Distribution in the 𝑦–𝑧 plane of the energy transfer components Pℓ→𝑠 , T𝑤→𝑟 ,
D𝑠 , and D𝑟 at times 𝑡1 to 𝑡4, normalised by each of their maximum values across the time

window 𝑡1 ⩽ 𝑡 ⩽ 𝑡4. Roll streamlines are coloured by the local roll energy. Red contour
lines show high streak energy (E𝑠 ⩾ 0.25 maxΩ {E𝑠} ). Shaded Production Windows are

shown for negative and positive streaks (PW− , teal, and PW+, pink). The right-hand
column shows the laminar velocity (green) and normalised shear (orange) along with the

normalised roll strain rate S∗ (grey dashed) defined in (4.11).
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Figure 11: Schematics of four different stages of the streak development and upward
migration at the centreline between the roll recirculation cells. Light red and teal represent

Production Windows (PWs), regions of the flow where the production term Pℓ→𝑠 is
positive. In darker red and teal, Streaks Development Bands (SDBs) are presented. These
are subregions of the PWs where Pℓ→𝑠 is of substantial size, and therefore regions where
streaks develop. The PWs and SDBs migrate upwards at a speed of 2

√
𝜋 according to the

locations of 𝑦± (𝜉) defined in the text and can sustain positive (PW+, SDB+, U > 0) and
negative (PW− , SDB− , U < 0) streaks. In (a), there is a PW− between 𝑦+ and 𝑦𝑆𝑃 which

is intentionally omitted for clarity of the discussion.

require that both 𝜕𝑈/𝜕𝑦 and V are large enough to provide a meaningful energy input to the486
streaks. We therefore expect to have reduced streak growth around 𝑦 = 𝑦± (where 𝜕𝑈/𝜕𝑦487
is small) and around 𝑦 = 0 (where V is small). This defines ‘Streak Development Bands’488
(SDBs) which are indicated with a darker shade in figure 11.489

To relate this scheme to the dynamics observed in figure 10, at the beginning of the cycle490
(𝜉 = 0) the region 0 < 𝑦 < 𝑦+(0) = 3

√
𝜋/4 has negative laminar shear 𝜕𝑈/𝜕𝑦 < 0 and491

positive vertical roll velocity V > 0 around 𝑧 ≈ 𝐿𝑧/2, meaning that a positively-signed492
streak (U > 0) grows in this region. However, due to the no-slip condition at 𝑦 = 0 (the493
boundary conditions ensure that V ∝ 𝑦2 near the wall), V is too weak near the wall to494
produce large values of Pℓ→𝑠. The streak therefore grows to a spatial extent of O(1) within495
a Streak Development Band (SDB), with its lower edge a little separated from the wall.496

A little after the beginning of the cycle, at 𝜉1 = 0.11, the laminar shear maxima 𝑦∗− (𝜉) has497
moved upwards to the lower edge of the streak, as shown in figure 10(a). At this time, the498
streak has essentially not moved from its initial position at 𝜉 = 0, but has become stronger499
and larger (c.f. figures 8(c) and 6(e) respectively) and the production Pℓ→𝑠 is centred in the500
middle of the streak. There is substantial dissipation D𝑠 in a ring around the streak, owing501
to increased streak velocity gradients.502

The total streak dissipation is lower than the total production (⟨D𝑠⟩Ω < ⟨Pℓ→𝑠⟩Ω) for503
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𝜉1 ⩽ 𝜉 ⩽ 𝜉2 = 0.25 and so the streak continues to grow in magnitude during this period.504
However, it starts to migrate upwards, as do the concentrations of D𝑠 and Pℓ→𝑠, as can505
be seen in figure 10(b). After 𝜉 = 1/8, the region 0 ⩽ 𝑦 < 𝑦− (𝜉) has positive laminar506
shear 𝜕𝑈/𝜕𝑦 > 0 and positive vertical roll velocity V > 0, so that any positively-signed507
streak velocity U > 0 in this region experiences negative production Pℓ→𝑠, i.e. the lift-up508
mechanism acts to destroy the streak in 0 ⩽ 𝑦 < 𝑦− (𝜉). This ultimately means that the509
streak cannot exist (with a significant amplitude for any significant period of time) outside510
of 𝑦− (𝜉) < 𝑦 < 𝑦+(𝜉). This region with positive production migrates upward at speed511
d𝑦−/d𝜉 = d𝑦+/d𝜉 = 2

√
𝜋, and hence so does the streak. Interestingly, the streak advection512

term ReV𝜕U/𝜕𝑦 in (4.2) has an advection velocity ReV around 2 to 3 times larger than513
2
√
𝜋 within and around the streak (depending on the time during the cycle), so that the streak514

is effectively hindered from migrating upward with the roll advection since any part of the515
streak crossing the upper edge of the SDB at 𝑦+ is subject to destruction from Pℓ→𝑠 < 0.516

As this upward migration proceeds, the magnitude of the laminar shear decreases517
exponentially in time; within 𝑦− (𝜉) < 𝑦 < 𝑦+(𝜉), we have |𝜕𝑈/𝜕𝑦 | ⩽

√
𝜋𝑒−2𝜉 . The518

streak energy saturates at a time 𝜉2 < 𝜉 < 𝜉3 = 0.35 (see figure 8(c)) and at 𝜉3 the total519
streak dissipation is larger than the production (⟨D𝑠⟩Ω > ⟨Pℓ→𝑠⟩Ω). Throughout the period520
of growth and uplift, 𝜉1 < 𝜉 < 𝜉3, the centre of the streak and its production remain above521
the location of the minimum laminar shear, 𝑦∗− (𝜉). Instead, the streak centres itself in the522
middle of the production region 𝑦− (𝜉) < 𝑦 < 𝑦+(𝜉). This can be seen in figures 10(b,c) in523
which 𝑦∗− (𝜉) is located around a quarter of the way up the streak (it is straightforward to524
show that 𝑦+ − 𝑦− = 4(𝑦∗ − 𝑦−)).525

However, the ultimate fate of the streak is not to be gradually lost to dissipation while526
continuing to move upwards as the production rate continues to decrease exponentially.527
Instead, the upward migration of the production window 𝑦− (𝜉) < 𝑦 < 𝑦+(𝜉) eventually528
moves the centre of the streak on top of the roll velocity stagnation point, see figure 10(d) at529
𝜉4 = 0.5. The streak is essentially ripped apart in the stagnation point due to the high strain530
rate in this region (a peak of global strain-rate magnitude is observed around the stagnation531
point in figure 10 (a-d) and its magnitude is around 15 when the streak crosses it), substantial532
wave activity is created (see figure 8(c,d)), and the local streak dissipation rapidly destroys533
what remains. Meanwhile, a new streak is formed close to the wall, below 𝑦− (𝜉4) = 3

√
𝜋/4,534

in which the laminar shear is positive (𝜕𝑈/𝜕𝑦 > 0) and the vertical roll velocity is (still)535
positive (V > 0), and so the production term Pℓ→𝑠 produces a negatively-signed streak in536
this region (U < 0). The cycle then repeats itself during 0.5 ⩽ 𝜉 < 1, with the sign of the537
streak reversed from the description above.538

This description of the streak cycle predicates that the roll velocity magnitude is sufficient539
for the lift-up mechanism to act against the laminar shear in the correct way. The rolls are540
sustained by energy transfer from the waves (T𝑤→𝑟 ), and dissipate energy in regions where541
vertical and spanwise velocity gradients are concentrated (D𝑟 ). Figures 10(a-c) show that542
the roll dissipation is concentrated around the stagnation point in a ‘figure eight’ pattern543
throughout most of the cycle. This is the location where the streamlines change direction544
from vertical to horizontal most rapidly, and therefore where the largest gradients are expected545
to be located. The magnitude of the dissipation decreases from 𝜉1 to 𝜉4. At the end of the546
(single) streak cycle, 𝜉 = 𝜉4 = 0.5, there is also dissipation in the area between the old streak547
and the new streak, within which W changes sign. This dissipation region is also present at548
time 𝜉1, between the previous streak and the new streak that has just developed.549

Just after the beginning of the cycle, at 𝜉1, there is a peak in the transfer from the waves to550
the rolls, T𝑤→𝑟 (figure 10(a)). This is from wave activity associated with the final destruction551
of the previous streak at the stagnation point. As such, the energy transfer from waves to552
rolls is concentrated around the stagnation point, and acts primarily to accelerate the rolls553
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horizontally (W) away from the stagnation point. This energy transfer takes the form of a554
wave Reynolds stress (see appendix A), and a detailed description of which terms contribute555
to this Reynolds stress is given in the next section. Mass conservation ensures that this local556
forcing enhances the rotation of the entirety of the cells, and concentrates the streamlines557
within the stagnation point. At the intermediate times 𝜉2 and 𝜉3, the energy transfer from558
the waves decays (figure 10(b,c) which leads to the streamlines receding from the stagnation559
point, and expanding the dissipation pattern away from it.560

By the end of the cycle at 𝜉 = 𝜉4, the total energy transfer from the waves to the rolls,561
⟨T𝑤→𝑟 ⟩Ω, is halfway to its maximum value (see figure 8(d)), and its distribution starts562
resembling that observed at time 𝜉1 (see figure 10(d)). This reflects the fact that the destruction563
of the old streak is underway by time 𝜉4, and waves are already being produced.564

4.3. Waves565

To complete the description of the PSSP, the distribution of the wave energy density Ê, the566
transfer from the streaks to the waves, T𝑠→𝑤 , and the wave dissipation D𝑤 must be explored.567
At high Reynolds number, wave energy, and its transfer terms, are expected to concentrate568
along lines of constant total streamwise velocity, 𝑈 + U = 𝑐, where 𝑐 is the (real) phase569
speed of the waves (so-called critical layers). Figure 12 shows the wave energy components570
Ê, T𝑠→𝑤 , T𝑤→𝑟 and D𝑤 at the same times 𝑡1 to 𝑡4 along with contour lines of constant571
total streamwise velocity (critical layer candidates). The timing and spatial distribution of572
the wave energy and its transfer terms agree with the dynamics deduced when analysing the573
rolls. In particular, the wave energy Ê is high during the streak destruction period of the574
cycle (figure 12(a,d)), and the energy concentrates around the stagnation point where this575
destruction occurs. As expected, the wave dissipation D𝑤 is also high during these periods576
and overlaps spatially with the wave energy. A closer inspection of figures 12 (c,d) indicates577
that, in the lead-up to the streak destruction, the wave energy concentrates in the region578
between the upper part of the streak and the stagnation point. This indicates that the streak579
begins to lose stability (to waves) before it completely overlaps with the region of largest580
strain rate.581

Since the laminar flow decays exponentially away from the wall (|𝑈 | ⩽ 0.1 for 𝑦 ≳ 1.3),582
but the streaks are O(1) before they dissipate, contours of total streamwise velocity 𝑈 + U583
in the vicinity of the streak are strongly shaped by the streak velocity U and are similar to584
contours of the streak velocity alone for 𝑦 ≳ 2. During the middle part of the cycle, when585
the streak is rising from its initial position towards the stagnation point (figure 12(b,c)) this586
results in open contours of 𝑈 + U bending up and around the streak. However, at the end587
of the cycle (and beginning of the next cycle), a region of closed contours forms around588
the stagnation point (figures 12(d,a)). The waves are most active during this time, and so589
they become ‘trapped’ in this region by the closed total streamwise velocity contours. This590
trapping causes the transfer to the rolls, T𝑤→𝑟 , to be focused around the stagnation point.591

Figure 13 shows the two transfer terms, T𝑠→𝑤 and T𝑤→𝑟 , in more detail around the592
stagnation point when the waves are most active at time 𝑡1. The transfer from the waves to593
the rolls, T𝑤→𝑟 , is focused around the contour 𝑐 = −0.075, and so the waves are essentially594
stationary during the relatively short time that they are active, since they would otherwise595
take a time 𝐿𝑥/𝑐 ≈ 110 to traverse the streamwise length of the domain. Figure 8(d) shows596
that T𝑠→𝑤 and T𝑤→𝑟 are in phase, so that the energy transfer from streak to waves and then597
from waves to rolls takes place almost simultaneously within this closed contour region.598
However, figure 13 shows that the spatial distribution of the two terms is different; transfer599
to the waves (T𝑠→𝑤) is centred in a region just below the stagnation point, but transfer to the600
rolls (T𝑤→𝑟 ) ejects fluid horizontally away from the stagnation point, as discussed above.601

To complete the picture of the wave dynamics, figure 13 also plots vertical profiles at602
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Figure 12: Distribution in the 𝑦–𝑧 plane of the energy transfer components T𝑠→𝑤 , T𝑤→𝑟 ,
Ê, and D𝑤 at times 𝑡1 to 𝑡4, normalised by each of their maximum values across the time
window 𝑡1 ⩽ 𝑡 ⩽ 𝑡4. Red contour lines show high streak energy (E𝑠 ⩾ 0.25 maxΩ{E𝑠}).
Dotted lines ranging from orange to brown are contour lines of total streamwise velocity
𝑈 +U = 𝑐 for −0.1 ⩽ 𝑐 ⩽ 0.1. The stagnation point is indicated with a circle marker.

three spanwise (𝑧) locations (through the stagnation point, 𝑧𝐶 , to its left, 𝑧𝐿 , and to its right,603
𝑧𝑅) of the streak and roll velocities, along with wave Reynolds stress divergence terms.604
Figure 13(a) shows that, in the centre of the streak, high streak velocity combines with the605
spanwise gradient of the spanwise-streamwise wave Reynolds stress (𝜕⟨𝑢̂𝑤̂⟩/𝜕𝑧) to control606
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Figure 13: Left: a reproduction of figure 12(a) at 𝑡 = 𝑡1 of (a) T𝑠→𝑤 and (b) T𝑤→𝑟 in more
detail around the stagnation point. The thicker dotted line corresponds 𝑐 = −0.075. Right:
vertical profiles of the streak, roll, and wave Reynolds stress terms that contribute to the
energy transfer terms at the three spanwise locations 𝑧𝐿 , 𝑧𝐶 , and 𝑧𝑅 shown on the left.

the energy transfer from streaks to waves, T𝑠→𝑤 (see the profiles for 𝑧 = 𝑧𝐶). Physically,607
this represents waves extracting streamwise momentum from the streaks and redistributing608
it into spanwise wave momentum. The profiles observed at 𝑧 = 𝑧𝐿 and 𝑧 = 𝑧𝑅 in figure609
13(b) show that the spanwise roll velocity W combines with the spanwise gradient of the610
spanwise-spanwise wave Reynolds stress (𝜕⟨𝑤̂𝑤̂⟩/𝜕𝑧) to controlT𝑤→𝑟 . This represents waves611
depositing spanwise momentum back into the mean flow (in this case, the rolls). In particular,612
although the streak velocity U changes sign every half-period and the symmetries of the613
(linearised) wave equations ensure that ⟨𝑢̂𝑤̂⟩ changes sign also, the fact that the transfer from614
waves to rolls, T𝑤→𝑟 , is dominated by the sign-definite term ⟨𝑤̂𝑤̂⟩ means that the roll velocity615
W does not change sign, and by extension neither does V due to continuity, resulting in the616
rolls maintaining their flow direction instead of reversing every half-period. This description617
helps to clarify how the waves mediate the transfer of energy from the streaks to the rolls,618
allowing the latter to persist and drive the cycle via the lift-up mechanism.619

4.4. Wall stresses620

The PSSP dynamics described above have an effect on the shear stresses ⟨𝜏⟩𝑥,𝑧 exerted621
on the wall by the flow. Figure 14(a) plots time series of the average laminar, streak, and622
roll shear stress at 𝑦 = 0, showing that these three components of the total shear stress are623
separated by four orders of magnitude, with the laminar shear stress being larger than the624
streak shear stress, which is in turn larger than the roll shear stress. The streak shear stress625
is almost periodic, alternating between positive and negative values with a period of 𝑇 and626
a phase-shift of approximately 𝑇/2 with respect to the laminar shear stress. The roll shear627
stress is irregular and remains negative for most of the time window.628

A closer inspection of the phase-shift between the laminar and streak-induced shear stresses629
in figure 14(a) reveals two types of motion within the edge dynamics. During 20 ≲ 𝑡 ≲ 22630
and 23 ≲ 𝑡 ≲ 25, the phase-shift between the two shear stresses is close to 𝑇/2. At the other631
times in the figure, the streak-induced shear stress shifts slightly earlier by around 𝑇/8 and632
changes shape; rather than being nearly symmetric around each local peak value, the peaks633
become skewed to earlier times. Two such features, at 𝑡 ≈ 22.5 and 𝑡 ≈ 25.5 correspond to634
jumps of the structure by 𝐿𝑧/2. However, the period 26 ≲ 𝑡 ≲ 30 contains no such jumps and635
yet contains the same shear stress pattern. This period is associated with slightly elevated636
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Figure 14: (a) Average shear stress ⟨𝜏⟩𝑥,𝑧 at the wall due to the laminar (orange), streak
(red), and roll (teal) flows for 20 < 𝑡 < 30. Dashed lines indicate negative values. (b) Power
of energy transfer from the plate to the fluid due to the laminar (orange) and streak (red)
flows. Dashed, negative values indicate that the plate is transferring energy to the fluid.

total perturbation energy (c.f. figures 3(a), 5(g,h)) and streak and wave energies (c.f. figure637
8(a) and the supplementary movie). The effect of this 𝑇/8 shift during this more energetic638
period, though small, is slightly delayed total shear stress peaks, along with slightly elevated639
shear stresses leading up to and during the laminar shear stress reversals. Within transitional640
turbulence, which is significantly more energetic than these edge dynamics, Ozdemir et al.641
(2014) observe more exaggerated versions of these two features when Re ≈ 1063. This642
suggests that the dynamics presented herein may relate directly to some key processes of643
transitional turbulence, though future detailed investigation of this hypothesis is necessary.644

To analyse the influence of PSSP on the energy input needed to maintain the plate645
oscillation, figure 14(b) shows the non-dimensional power per unit area of the laminar646
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and perturbation velocity fields at 𝑦 = 0. These powers are given by647
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where 𝑷𝑈 and 𝑷U are the dimensional power associated with the laminar and the perturbation650
streak flows respectively. The figure shows that both the laminar and the streak powers are651
periodic with a period of 𝑇/2. Similarly to their shear stresses, the laminar and streak power652
are out of phase with each other.653

Figure 14(b) also shows that positive and negative power values are different in magnitude;654
the laminar power has larger negative peaks than positive peaks and so is a net consumer of655
energy, whereas the streak power has larger positive peaks than negative peaks and so is a656
net contributor of energy to the plate motion. The back-and-forth motion of the plate must657
overcome the inertia of the fluid in order to repeatedly reverse its direction, and so the average658
energy transfer over each cycle must be from the plate to the fluid. However, there are periods659
within each cycle during which energy is instantaneously transferred back to the plate, as660
the inertia of the fluid drives the plate in the same direction as it travels. These windows661
are short; the laminar flow shear force 𝐹𝜏ℓ is in the same direction as the plate velocity 𝑈662
for 1/8 < 𝜉 < 1/4 and 5/8 < 𝜉 < 3/4 (for a total of 1/4 of the whole cycle), as shown in663
figure 15. Furthermore, the power of energy transfer from the laminar flow back to the plate664
is substantially smaller than during the rest of the cycle when the laminar flow gains energy665
from the plate. On the other hand, the perturbation streak flow is a net contributor to the plate666
energy (albeit at a substantially lower power), reducing the total energy consumption. The667
relative timing during the cycle means that the streak inertia contributes most to reducing668
the power transfer from the plate when the laminar shear force is most strongly opposed to669
the plate motion.670

5. Conclusions671

In this work, we characterised and analysed the flow structures of an edge state in the672
oscillatory Stokes boundary layer. We used DNS to perform edge tracking of the manifold673
that separates flow trajectories which either re-laminarise or become turbulent. The edge674
was tracked for approximately 40 diffusive time units for Re = 1000. The edge dynamics675
are organised into streak-like structures of size O(1), which originate a little above the676
oscillating wall and migrate upward at a speed of 2

√
𝜋 (the phase speed of travelling features677

of the laminar flow), dissipating around 𝑦 ≲ 3. This behaviour is repeated cyclically (twice678
within each wall-oscillation cycle), and results in alternating production- and dissipation-679
dominated phases within each period. The formation and upward motion of the structures680
occurs predominantly during the wall deceleration phase, and their loss of coherence and681
eventual dissipation near 𝑦 ≲ 3 occurs during the acceleration phase. These structures682
are isolated in the spanwise direction for much of the edge state trajectory, sporadically683
duplicating and occupying the entire spanwise extent of the flow domain before a new684
spanwise localised state emerges. We focussed on the localised flow periods in order to685
understand and describe the dynamics of the edge.686

We performed a streak-roll-wave (SRW) decomposition of the velocity field in order to687
interpret the cycle using flow components which comprise the well-known Self Sustaining688
Process (SSP) (Hall & Smith 1991; Waleffe 1997), and in doing so detailed a periodic,689
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Figure 15: Power of energy transfer transfer from the plate to the fluid for 20 < 𝑡 < 21
(indicated by 0 < 𝜉 < 1 with 𝑘 = 20) for the laminar (yellow) and streak (red) flows.

Negative values indicate energy transfer from the plate to fluid. In the bottom of the plot,
the sketches show the direction of the plate velocity and the laminar shear force exerted on

the plate.

spatially evolving version of the typically steady or confined SSP. The rolls are composed of690
four counter-rotating recirculation cells of diameter ≈ 𝐿𝑧/2 that converge into a stagnation691
point at a height 𝑦𝑆𝑃 ≲ 3. The rolls are persistent, only slightly modifying their shape over692
the cycle, and this relatively unchanging flow component allows for the so-called Periodic693
Self Sustaining Process (PSSP) to be generated.694

The stages of the cycle can be summarised as follows: (i) at the beginning of the cycle,695
the rolls lift high-velocity fluid near the oscillating wall upward to create a large velocity696
defect, creating and sustaining the streaks, (ii) once a streak has formed, it can only continue697
to grow and exist within a region having the same sign of laminar shear as when it was698
created, and regions of constant laminar shear sign migrate upward at a speed of 2

√
𝜋, thus699

controlling the upward migration of the streaks, (iii) the upward moving streaks eventually700
reach the stagnation point at 𝑦𝑆𝑃 ≲ 3 and cannot be transported any further owing to a701
reversal in the sign of the streak production rate, and are instead torn apart by the stagnation702
point, dissipating while transferring a small amount of energy to the waves, (iv) lines of703
constant total streamwise velocity (potential critical layers) trap the waves in the vicinity704
of the stagnation point, and the waves transfer a small amount of energy to the rolls via a705
Reynolds stress directed in the spanwise direction away from the stagnation point, (v) mass706
conservation within the roll system ensures that the upwards roll velocity where the streaks707
are created maintains its energy against dissipation, thus sustaining the cycle by creating708
a new (oppositely signed) streak. The dynamics of the edge at Re = 1200 are quantitively709
similar to those at Re = 1000, although no clear scaling between the two Reynolds numbers710
was observed, due to their modest size and small separation. Additionally, edge dynamics in711
a narrower domain at Re = 1000 were somewhat chaotic due to their confinement, although712
qualitatively similar structures were observed.713

Finally, a brief analysis of the effect of the edge dynamics on the wall shear stress and power714
consumption was performed. The shear stress exerted by the streaks contributes (slightly) to715
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reducing the energy needed to move the plate, and this effect occurs when the laminar flow716
is extracting energy from the plate with the most power.717

The PSSP unveils a fundamental mechanism by which streaks may be raised away from the718
laminar boundary layer, growing during the deceleration phase and with a phase-lag to the719
laminar flow. Were this process to occur at a slightly larger amplitude away from the edge state,720
then presumably adjacent streaks would readily combine into hairpin vortices and deliver721
spanwise ejections into the free stream which break down to turbulence, as in the observed722
bypass transition process. This work therefore provides evidence towards a key component723
of bypass transition, that of streak growth and regeneration, being fundamentally tied to724
physics within the boundary layer itself and its self-contained interaction with the background725
laminar flow. Confirmation of this would require an analysis of the linear stability properties726
of the edge trajectory, or the computation of its optimally growing disturbances (see, e.g.727
Andersson et al. 1999; Luchini 2000; Cherubini & De Palma 2015; Firano et al. 2015).728
A careful analysis of such disturbances for this fully three-dimensional, time-varying edge729
trajectory represents a significant future endeavour. We also note that the streaks presented730
here bear some resemblance to those found in other oscillating shear flows, particularly large731
laminar separation bubbles (Gaster 1966; Pauley et al. 1990) and structures associated with732
their slow mode of oscillation (Cherubini et al. 2010a,b; Rodrı́guez et al. 2021; Verdoya733
et al. 2021; Malmir et al. 2024). However, a direct comparison between these objects is not734
easily made within the current work.735

It remains to be seen how the structures in the PSSP scale with Re and to what extent736
the structures in fully-developed Stokes-layer turbulence resemble the edge state PSSP737
described herein. Repeated, extensive attempts were made to converge dynamics on the738
edge to a periodic orbit using a Newton–GMRES–hookstep solver but to no avail, potentially739
suggesting that any coherent edge state structures are quasi-periodic. Though computationally740
expensive, a fully localised edge trajectory in a large domain should be sought. Not only741
would such a structure be most physically relevant, it may also represent truly periodic742
behaviour if the quasiperiodicity of the results presented here owe their origin to interactions743
between neighbouring streaks through the periodic boundaries. Nevertheless, the current744
identification and full description of periodic self-sustaining motion within the oscillating745
Stokes boundary layer sets the groundwork for interpreting its structural dynamics alongside746
better studied steady or confined shear flows.747

Supplementary data. A movie accompanying figure 6 is available.748
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Appendix A. Energetics of the SRW decomposition760

Projecting the streak equation (4.2) onto the streak velocity field U, we obtain761

𝜕E𝑠

𝜕𝑡
+ ReU 𝑗

𝜕E𝑠

𝜕𝑥 𝑗

= −Re

(
UV 𝜕𝑈

𝜕𝑦
+U

𝜕
〈
𝑢̂𝑢̂ 𝑗

〉
𝑥

𝜕𝑥 𝑗

)
+ 𝜕2E𝑠

𝜕𝑥 𝑗𝜕𝑥 𝑗

− 𝜕U
𝜕𝑥 𝑗

𝜕U
𝜕𝑥 𝑗

, (A 1)762

where E𝑠 = 1
2U

2 is the streak energy density. Projecting (4.3) onto V and (4.4) onto W,763
summing the resulting equations, we obtain764

𝜕E𝑟

𝜕𝑡
+ ReU 𝑗

𝜕E𝑟

𝜕𝑥 𝑗

= −
𝜕

(
U 𝑗𝒫

)
𝜕𝑥 𝑗

− Re

(
V

𝜕
〈
𝑣̂𝑢̂ 𝑗

〉
𝑥

𝜕𝑥 𝑗

+W
𝜕

〈
𝑤̂𝑢̂ 𝑗

〉
𝑥

𝜕𝑥 𝑗

)
765

+ 𝜕2E𝑟

𝜕𝑥 𝑗𝜕𝑥 𝑗

− 𝜕V
𝜕𝑥 𝑗

𝜕V
𝜕𝑥 𝑗

− 𝜕W
𝜕𝑥 𝑗

𝜕W
𝜕𝑥 𝑗

, (A 2)766

where E𝑟 = 1
2 (V

2 +W2) is the roll energy density.767

By construction, E = E𝑠 + E𝑟 + Ê, where E = ⟨𝑒⟩𝑥 is the 𝑥-averaged total energy density768
and Ê = ⟨ 1

2 |𝒖̂ |
2⟩𝑥 is the 𝑥-averaged wave energy density, given that the cross-term ⟨U · 𝒖̂⟩𝑥769

in E vanishes since U does not depend on 𝑥 and ⟨𝒖̂⟩𝑥 = 0. Therefore, the equation for the770

waves kinetic energy Ê can be obtained from 𝜕Ê
𝜕𝑡

= 𝜕E
𝜕𝑡

− 𝜕E𝑠

𝜕𝑡
− 𝜕E𝑟

𝜕𝑡
, which leads to771

𝜕Ê
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𝜕Ê
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772

+ 𝜕2Ê
𝜕𝑥 𝑗𝜕𝑥 𝑗

−
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𝜕𝑥 𝑗

𝜕𝑢̂𝑖
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〉
𝑥

. (A 3)773

Integrating these equations over the whole domain gives evolution equations for the total774
streak 𝐸𝑠 ≡ ⟨E𝑠⟩Ω, roll 𝐸𝑟 ≡ ⟨E𝑟 ⟩Ω, and wave 𝐸̂ ≡ ⟨Ê⟩Ω energies, and defines production775
(P), transfer (T ), and dissipation (D) rates associated with the laminar (ℓ), streak (𝑠), roll776
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(𝑟), and wave (𝑤) components of the flow:777

d𝐸𝑠
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