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Abstract: The Stokes boundary layer (SBL) is the oscillating flow above a flat plate. Its
laminar flow becomes linearly unstable at a Reynolds number of Re = Up~/Tp/v ~ 2511,
where U is the amplitude of the oscillation, Ty is the period of oscillation, and v is the fluid’s
kinematic viscosity, but turbulence is observed subcritically for Re > 700. The state space
consists of laminar and turbulent basins of attraction, separated by a saddle point (the ‘edge
state’) and its stable manifold (the ‘edge’). This work presents the edge trajectories for the
transitional regime of the SBL. Despite linear dynamics disallowing the lift-up mechanism in
the laminar SBL, edge trajectories are dominated by coherent structures as in other canonical
shear flows: streaks, rolls, and waves. SBL structures are inherently periodic, interacting with
the oscillating flow in a novel way: streaks form near the plate, migrate upward at a speed
2+/r, and dissipate. A streak-roll-wave decomposition reveals a spatio-temporally evolving
version of the Self-Sustaining Process (SSP): (i) rolls lift fluid near the plate, generating
streaks (via the lift-up mechanism), (ii) streaks can only persist in regions with the same sign
of laminar shear as when they were created, defining regions that moves upward at a speed
24/, (iii) the sign of streak production reverses at a roll stagnation point, destroying the streak
and generating waves, (iv) trapped waves reinforce the rolls via Reynolds stresses, (v) mass
conservation reinforces the rolls. This Periodic SSP highlights the role of flow oscillations
in sustaining transitional structures in the SBL, providing an alternative picture to ‘bypass’
transition, which relies on pre-existing free stream turbulence and spanwise vortices.

Key words:

1. Introduction

Oscillatory flows are ubiquitous in nature (Jensen et al. 1989; Spalart & Baldwin 1987),
biomechanical systems (Ku 1997; Taylor & Draney 2004) and engineering applications
(Adcock et al. 2021; Gatti & Quadrio 2016), with ongoing research including a particular
focus on transition to turbulence in oscillatory boundary layers (Blennerhassett & Bassom
2008; Biau 2016; Xiong et al. 2020; Blondeaux et al. 2021; Gong et al. 2022). The canonical
oscillating flow is the Stokes Boundary Layer (SBL), the flow above a sinusoidally oscillating

+ Email address for correspondence: jsandoval001 @dundee.ac.uk

Abstract must not spill onto p.2



33
34

35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

71
78
79
80
81

2

flat plate. The transition to turbulence in this flow is complex (von Kerczek & Davis 1974;
Blennerhassett & Bassom 2008; Mujal-Colilles et al. 2016; Blondeaux & Vittori 2021); the

SBL is a subcritical flow that exhibits turbulent dynamics at Reynolds numbers Re = Uy~+/Tp/v
(where Uy is the velocity oscillation amplitude, Tj is the oscillation period, and v is the fluid’s
kinematic viscosity) below the critical Reynolds number Re. =~ 2511 at which the laminar
solution becomes linearly unstable to normal mode perturbations (Blennerhassett & Bassom
2002), although convective linear instability occurs below this critical value in domains with a
large horizontal extent (Ramage et al. 2020; Pretty et al. 2021). The critical Reynolds number
found by Blennerhassett & Bassom (2002) is based upon a Floquet analysis of perturbations
growing over the whole oscillation cycle.

Ozdemir et al. (2014) summarised several theoretical, experimental and numerical works
on the SBL and categorised the flow into four regimes: (i) Laminar (Re < Re,, ), (ii) Disturbed
Laminar (Re;, < Re < Re.,), where some disturbances such as spanwise vortices are
observed, but without enough growth to trigger transition, (iii) Intermittently Turbulent
(Rec, < Re < Re.,), where some turbulent features such as bursts of energy during the mid
and late deceleration phases are observed, which laminarise during the early acceleration
phase, and (iv) Turbulent (Re > Re.3). Around the onset of the intermittently turbulent
regime, Ozdemir et al. (2014) observed a self-sustaining transitional behaviour, and this has
been described in terms of a ‘bypass’ transition in which streamwise streaks triggered by
free stream turbulence grow, form hairpin vortices, and then eject a spanwise vortex back
into the free stream, which subsequently breaks down to turbulence and reinitiates the cycle
(Xiong et al. 2020; Gong et al. 2022). Mier et al. (2021) and Fytanidis et al. (2021) reported
that this self-sustaining transitional behaviour is associated with a phase-lag between the
wall-shear stress and the laminar velocity, with disturbances growing during the deceleration
phase and decaying during the acceleration phase (see also Luo & Wu 2010), an observation
in agreement with the transitional cycles observed in other, wall-bounded oscillating flows
(Pier & Schmid 2017; Ebadi et al. 2019; Pier & Schmid 2021; Linot et al. 2024).

Crucially, however, such a ‘self-sustaining’ bypass transition relies upon turbulent motions
and strong spanwise vortices. This sets it apart from the coherent motions of the Vortex-
Wave Interaction states (Hall & Smith 1991; Hall & Sherwin 2010), often realised as
‘edge states’ controlling the transition to turbulence in steady wall-bounded shear flows
(Skufca et al. 2006; Kim & Moehlis 2008; Schneider & Eckhardt 2006; Duguet et al. 2009;
Schneider et al. 2010; Eaves & Caulfield 2015) which follow the Self-Sustaining Process
(SSP) (Waleffe 1997) of streamwise vortices created via the lift-up mechanism (Landahl
1980) and sustained by weak three-dimensional waves. From a dynamical systems point
of view, laminar and turbulent flows can be seen as attractors in a high-dimensional state-
space, whose basins of attraction are separated by a manifold termed the ‘edge of chaos’ (or
simply the ‘edge’) (Skufca er al. 2006), containing local attractors known as ‘edge states’.
Characterisation of these edge states offers an alternative view of the physics associated with
transition to turbulence which is self-contained, omitting the need to invoke pre-existing free
stream turbulence to initiate transition, and, in the case of steady shear flows, requiring only
streamwise vortices. Furthermore, the mechanisms underlying such states are also known
to control important processes in the fully turbulent flow (see e.g. Kawahara et al. 2012;
Budanur et al. 2017).

In steady wall-bounded shear flows, these edge states rely on the lift-up mechanism, a
linear transient growth mechanism by which parcels of fluid are advected (‘lifted’) through
a shear flow, for example taking high-speed fluid and moving it to a low-speed region,
creating streamwise momentum defects. Continued advection leads to large transient growth
over a long (O(Re)) timescale, and is responsible for producing large-amplitude (O(1))
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streamwise streaks when realised at finite amplitude. A steady background shear allows the
lift-up mechanism to accumulate momentum defects in fixed locations over a long period
of time, and so it is often the linear mechanism with the largest, and longest sustained,
growth (Butler & Farrell 1992) and hence is integral to the SSP (Waleffe 1997). However, in
the SBL, the lift-up mechanism is not an optimal linear transient growth mechanism (Biau
2016) since the laminar shear flow is periodically oscillating, preventing momentum defects
from accumulating in a single location, and reversing sign every half-period. Instead, the
Orr mechanism (Orr 1907) is dominant, which allows for moderate growth as spanwise
vortices are tilted by the background shear over a short timescale. It is known that even
small disruptions to the lift-up mechanism have the potential to significantly affect edge state
dynamics (Eaves & Caulfield 2015).

These observations raise the interesting question as to what self-sustaining mechanism(s)
edge states in the SBL utilise to balance dissipation (relaminarisation) against instability
(transition to turbulence). On the one hand, a traditional interpretation of the SSP as using
the lift-up mechanism due to its optimal linear growth would potentially point to new, Orr-
based edge states for the SBL. On the other hand, transitional SBL flows are observed to
consist of streamwise streaks (Sarpkaya 1993; Costamagna et al. 2003) and so perhaps some
nonlinearity associated with the edge state dynamics allows the lift-up mechanism enough
‘time’ to create large-amplitude streaks. The most well-studied edge states have been steady,
and so the different components of the SSP act all together at the same time, however in
this second, lift-up based scenario, any realisation of the SSP in the SBL would evolve
periodically in order to accommodate the alternating shear direction of the background flow,
opening up the potential for components of the SSP to act sequentially. In order to make
some connection with the bypass transition scenario, whatever mechanisms arise within the
edge state dynamics should shed light upon how boundary layer ejections could be initiated
without resorting to pre-existing turbulence.

In this work, we compute edge trajectories in the transitional regime of the SBL and analyse
their dynamics in order to determine the underlying physical mechanisms which sustain them.
We demonstrate that the edge states are periodically evolving versions of the SSP, utilising
the lift-up mechanism, and that a temporal interplay between the laminar shear and streak
nonlinearity results in streak migration away from the wall (non-turbulent ejections) and
sequential activation of different components of the flow. In §2 we present the equations of
motion, the numerical model, and the edge tracking algorithm. In §3 we provide an overview
of the edge trajectory dynamics, which are examined in closer detail in section §4 which
presents a complete analysis of the Periodic Self-Sustaining Process (PSSP). Conclusions
are drawn in §5.

2. Methodology
2.1. Equations of motion

The Stokes boundary layer is the oscillatory flow above a flat plate, in which an oscillation
of period Ty is driven either by a sinusoidal oscillation in the velocity of the plate itself (in
the x-direction) of magnitude Uy or a sinusoidal oscillation of the pressure gradient above a
stationary plate; in this work, we study the former, oscillating plate flow. These oscillations
set up a boundary layer against the plate whose thickness is determined diffusively, leading
to the characteristic length-scale 6 = v/vTy in which v is the kinematic viscosity of the fluid.
We decompose the instantaneous velocity into the sum of a laminar component U = (U, 0, 0)
and a perturbation velocity field u = (u, v, w), such that #’°’ = U + u. Using index notation,
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4
the dimensionless incompressible Navier—Stokes equations for this flow read
0 u;

ox i

614,' Ou,- an 6ul] . ap azui

+Re|\Ui— +uj—+uj—|=- + ,
ar T Tax, T ax, T Yax, | T x| ax;0x,

-0, 2.1)

(2.2)

where the Reynolds number is given by

_ Vvt _ [T
V 2

v

Re 0 (2.3)
which follows the definition adopted by Biau (2016). We note that this definition of the
Reynolds number is a factor of /7 larger than that of von Kerczek & Davis (1974); Ozdemir
et al. (2014) and others, and is a factor of 2+/rr larger than that of Blennerhassett & Bassom
(2002); Ramage et al. (2020) and others; all values quoted here, including the critical linear
stability threshold Re. ~ 2511 have been converted to match (2.3). The boundary conditions
are

u® =6,;U(0,1) at y=0, 2.4)

i
tot

u® -0 as y-— oo, (2.5)

L

where 6;; is the Kronecker delta.

The laminar flow U = (U(y, ), 0, 0) is directed along the x-axis and varies in the vertical
y-direction. The laminar flow is the well-known solution to the Stokes second problem, and
is given by

U(y, 1) = cos(2nt — Vmy)e V7, (2.6)
The laminar flow is periodic with period T = 1, and it has a (time-)shift-reflect symmetry

U(y,t+T/2) =-U(y,1). 2.7

Local features of the laminar flow (such as maxima, minima, inflection points, etc.) move
upward away from the wall at a constant speed of 2+/7.
With this laminar flow, the boundary conditions for the perturbation velocity are

up=0 at y=0, (2.8)
u; >0 as y— oo, (2.9)
However, for numerical purposes a bounded domain is used, in which the streamwise x and

spanwise z directions are periodic, and a large wall-normal extent L, is chosen, at which
impenetrable and stress-free boundary conditions are applied,

ou ow
vy=0 and E:E:O at y=L,. (2.10)

A schematic representation of the oscillating wall problem is presented in figure 1.

2.2. Numerical implementation and setup

We solve equations (2.1-2.2) for the perturbation velocity u; with boundary conditions (2.8)
and (2.10) using the DNS solver DiaBrLo (Taylor 2008). This code employs pseudo-spectral
methods to compute spatial derivatives and uses a third-order Runge—Kutta scheme for
time integration, and a 2/3 de-aliasing rule is applied to deal with the nonlinear terms. The
simulations are carried out in parallel using the MPI library.

Focus on Fluids articles must not exceed this page length
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Figure 1: Problem diagram for flow above an oscillating wall. The lateral boundaries (x
and z) are periodic. In the wall-normal direction, the perturbation velocity satisfies the
no-slip condition, while the upper boundary is impenetrable and stress free.

The equations are solved in a rectangular domain of size Ly = L, = 8.2 and L, = 10.0.
The size of L, (and also L) is chosen to match the wavenumber of the largest transiently
growing linear disturbance at Re = 1000 (Biau 2016). The periodic x and z directions are
discretised using a uniform grid with N, = 64 and N, = 32 Fourier modes, respectively.
Initial tests used the same resolution as Biau (2016), N, = N, = 128, but this was scaled
back for efficiency since turbulent scales do not need to be resolved in order to accurately
compute the much simpler edge trajectories, and there was no significant loss in accuracy
found when doing so. The y direction is discretised using N, = 241 grid points, which
are stretched away from the wall to ensure an efficient and accurate representation of the
structures near the wall. The results are insensitive to other values of N, around this choice.
A narrower geometry with L, = 4.1 and N, = 16 is also briefly considered, and the resulting
dynamics are discussed in the next section.

2.3. Edge Tracking

Trajectories along the edge manifold may be found by ‘edge tracking’ (Skufca er al. 2006;
Toh & Itano 2003; Schneider ef al. 2007; Kreilos et al. 2013), an iterative procedure in which
trajectories of initial conditions either side of the edge are computed and bisected depending
on how they evolve in time. To classify trajectories as leading to laminar or turbulent flow,
we use the Ly-norm of the perturbation velocity field as a proxy (E = 0 is the laminar state
by construction):

1 1 1
E(u) = / 2u u dQ = o 2ulul dQ, 2.11)
Q

where Q = [0,L,) x [0,Ly) x [0,L;) and Vo = L L,L,. Starting with a pair of initial
conditions that lead to the laminar and turbulent states, and defining suitable upper and lower
thresholds on E () for transition to turbulence (E7.) and decay to the laminar state (E} ), we
can iteratively define new initial conditions that remain near the edge for long times. As the
flow is oscillatory in nature, the threshold conditions are met if the average energy of the
flow remains above or below these thresholds for a defined time window #,,¢.

If at time 7; we have an initial condition that evolves towards turbulence, u;’o, and an
initial condition that evolves towards the laminar state, uz’o, then a new initial condition at
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Figure 2: Bisection algorithm scheme. Block 1 indicates that when the energy, averaged
over a time window of size 4y, is larger than E7, or smaller than E7J , then 4 is scaled
down or up respectively. Block 2 shows that when two consecutive values of A are closer
than A1*, a new starting point is chosen to reinitialise the bisection process. Block 3 shows
how the new starting point is chosen. The latest turbulent and laminar trajectories remain
nearby for an extended period, until the energy difference between them is larger than
AE™. The last time for which the energy difference is below AE* is the new starting point.

this time, u"7, is defined by linear interpolation:
,0 ,0 ,0
ul =up + (W — ). (2.12)

Iterative bisection, enumerated by m, is performed on the parameter A over the interval [0,1],
which generates a set of initial conditions on the laminar and turbulent sides of the edge
(4 is increased if the trajectory from u}' decays to the laminar state, and decreased if it
transitions to turbulence). As the bisection proceeds, the trajectories on either side of the
edge spend longer periods of time close to the edge and close to each other. The first pair of
initial conditions used to start the bisection process consisted of u(%’o taken from a minimal
seed trajectory (for the definition of a minimal seed, see Kerswell 2018) as it approached
the edge state on the turbulent side of the edge manifold (minimal seeds in this problem will

be reported at a later date), along with u%o = 0, the laminar flow state. Results using an

alternative initialisation with u(%’o taken as a random sample of the turbulent flow did not

show any qualitative difference; the former option for u(%’o was chosen when generating a

long edge trajectory, owing to efficiencies associated with initialising the algorithm already
nearby to the edge.

Once the change in A between two consecutive iterations is less than a threshold A%,
it is no longer efficient to continue bisecting between the original two initial conditions in
(2.12) to track the edge. Instead, a new pair of laminar and turbulent initial conditions for
use in (2.12) are generated from the trajectories on either side of the edge. Letting m;, and
m7 be the number of initial conditions found on the laminar and turbulent sides of the edge
respectively, u'i’mL is the most recently found initial condition on the laminar side of the

edge, with trajectory u;4,, (), and u;’mT is the most recently found initial condition on the

turbulent side of the edge, with trajectory u;,,» (). We then set a new initial time t(')‘+1 =t

and new laminar and turbulent initial conditions for use in (2.12) as u2+1,0 = Ujam () and
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Figure 3: (a) Kinetic energy of the different trajectories bisected to follow the edge. The
first (transient) 16 time units of edge tracking are omitted. The red trajectories lead to
turbulence and the teal ones relaminarise. The infered edge trajectory shown with a
dashed black line. The thresholds for classifying trajectories as laminar (£} ) and turbulent
(E}) are marked with horizontal dashed lines. The time window over which the energy is
averaged is shown near t = 22. (b) A detailed version of (a) for 23.5 < r < 28.

u;“’o = Uyzyrp (%), where t* is the last time for which |E (#7400, (t)) — E (@b (2))| < AE™.
Different averaging times and threshold values were tested and 74, = 0.5, A1* = 1074,

AE* = 10‘6, Ez = 1074, and E; = 1073 showed to be suitable for achieving an accurate
representation of flow dynamics in the vicinity of the edge. These values were determined
during the initial stages of investigating the edge trajectory; E7. was initially set a little below
the turbulent average value (which is readily estimated from a single turbulent simulation),
and E; was set very low, at 1073, These initial values allowed for a short section of edge
trajectory to be computed, after which the thresholds were adjusted for efficiency to more
closely sandwich the observed edge properties. The values were regularly reviewed to ensure
that they were not interfering with the computation of the edge trajectory itself. A schematic
representation of the bisection and start time shifting procedure is presented in figure 2.

3. Edge Tracking Results

Following the procedure described in section 2.3, a set of edge trajectories was generated
for the baseline simulation, whose energies E (u) are shown in figure 3. The results show
that, near the edge, the energy is oscillatory with a dominant frequency of 7/2 caused by
the back-and-forth forcing of the wall (see figure 3 (b)). However, the energy on the edge is
not periodic (see figure 3 (a)), indicating that the edge state is not a simple periodic orbit,
but rather a chaotic saddle, albeit of a strong oscillatory nature. A total simulated time of
approximately 50 periods allows for a detailed description of the dynamics on the edge. Here
we focus on ¢ > 16, after the edge trajectory has settled onto the edge state.

To provide a better understanding of the energy dynamics, an energy evolution equation is
derived by projecting (2.2) onto the perturbation velocity field u; to obtain the local kinetic
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Figure 4: (a) Time-series of production rate (red) and dissipation rate (teal) for
20 <t < 30. (b) A detailed plot for 21 < ¢ < 22 showing that within half a period, there is
a production-dominated (P-D, red) stage and a dissipation-dominated (D-D, teal) stage.
The right-hand axis plots the magnitude of the wall velocity U, = U(0, t) (grey dashed).
The sign of the wall acceleration, d|Up(t)|/dt, is shown to correspond with the P-D and
D-D stages. The times of the six snapshots in figure 5 are indicated with dotted lines.

energy density defined as e = %uiu ;- The energy transport equation reads

de ap

o = oy

2 . .
07 _ Oui Oui G.1)

0
_Re [ui_(uin+ujUi+Mjui) +W 0xj 0x;

(9)6]

Defining the average operator (-)y, as (@), = i /Oin a dx;, where i = 1,2,3 for x, y and
z respectively, the total energy E is given by E = (e)y y . = (e)q. Integrating (3.1) over
the whole domain, taking into account the boundary conditions and the incompressibility
condition (2.1) leads to the global energy balance equation

dE ou 614,' 614,‘
— =(-Reuv—) —(—=—) =P@1) - D), 3.2
dr < ey ay >Q <8xj ij>g @) () 5-2)

where P (t) is the instantaneous production rate, and 9 (¢) is the instantaneous dissipation
rate. The production term has the general form of a stress (-Re uv) acting on a strain rate
(0U/dy), from which the energy transfer process from the laminar velocity gradient (induced
by the oscillation) to the perturbation velocity field is clear. Furthermore, the oscillation
period of T /2 observed in the energy is in agreement with the period 7 of dU/dy provided
that uv is also periodic with period T (and zero mean).

Figure 4 plots time series of the production and dissipation, and shows that they are in
phase, but that there are stages within the 7'/2 cycle when production is dominant and stages
when the dissipation is dominant. This observation is in broad agreement with previous work
on transitional behaviour in the Stokes layer, which indicates a growth of flow disturbances
during the deceleration phase (which is, accordingly, a production-dominated phase) and
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their decay during the acceleration phase (Ozdemir et al. 2014; Luo & Wu 2010). A closer
comparison between these observations and the transitional regime of Ozdemir et al. (2014)
is made in §4.4. The behaviour of the edge trajectory suggests the presence of an internal
self-sustained dynamics that balances the energy transfer among structures in the flow. To
further understand the dynamics along the edge, figure 5 plots snapshots of (e), on the y-z
plane at times ¢ = 21.11, £, = 21.25, 13 = 21.35, 14 = 21.50, t5 = 21.58, and 5 = 21.67,
which cover a total time just over 7' /2.

Figures 5(a-d) (times #; to #4) show a well-defined region in the y-z plane that concentrates
most of the kinetic energy of the flow, which modifies its shape and migrates upwards over
time. This region is located around (and just above) the instantaneous location of a local
maximum in the absolute value of laminar shear, |17/| = |0U/dy|, and rises with it. We
label this location y‘;‘[i“ (given that U /dy < 0). In figure 5(d) the region of concentrated
kinetic energy reaches a height y ~ 2 and begins to spread out. After t = 4 a new region
of concentrated energy is formed near the wall, seen in figures 5(e,f) (times 5 and #), and
the process repeats, although this new region aligns with the location of maximal positive
laminar shear, labelled y7**. Figure 5(g) plots the vertical distribution of the x—z averaged
energy (e)y,, over an extended period of time, demonstrating that this basic 7/2 cycle
repeats indefinitely, with flow structures periodically forming a little above the plate, rising,

and dissipating around y < 3.

The location of the flow structures in the spanwise direction varies sporadically in time,
as can be seen in figure 5(h), which shows the spanwise distribution of the x—y averaged
energy (e)y,y. The time window studied in figures 5(a-f) contains flow structures located in
a region around the centre of the spanwise domain, while the time window between ¢t = 23
and ¢ = 26 contains the same structures located around the (periodic) spanwise boundaries.
This ‘jumping’ of the structure by an amount L, /2 is characteristic of a spatially localised
structure which nevertheless feels the influence of its periodically located neighbours, owing
to the domain size L, being too small for the structure to evolve entirely freely, but large
enough for it to appear essentially isolated for extended periods (Khapko et al. 2016). These
jumps are associated with elevated energy E during a single half-period 7'/2 in figure 3,
as there are essentially two structures side by side, and are distributed randomly in time. If
the domain size L, were large enough, then the jumps would presumably cease since the
structure can evolve entirely independently, although this may instead induce a spanwise
drift (Khapko et al. 2013). Nevertheless, we shall treat the structure as an essentially isolated
object in the following analysis, as this is a reasonable approximation for much of the flow
evolution between jumps.

To provide a more detailed characterisation of the three-dimensional nature of these
structures, figures 6(a-d) plot isosurfaces of high-speed streaks (ug,qx = 0.5max{u}) and
low-speed streaks (#s,in = 0.5min{u}) at times f, to t5. The x-averaged energy (e) is
shown on the plane z = 0, and the height of maximal energy (ymax{(e),}) is plotted on the
planes x = 0 and z = L,. The instantaneous laminar flow profile is shown on the planes
z = 0 and z = L, (shifted to be centred at x = L, /2) for reference. These figures show
that the streamwise structures are streak-like, and instantaneously (at least visually) carry the
majority of the energy of the perturbed flow, as in the self-sustaining process (Hall & Smith
1991; Walefte 1997). Indeed, the streamwise velocity is O(1) within these streaks whilst
typical cross-stream velocities are O(10~3). Within a single half-period 7'/2 (times ¢, to t3),
a single streak with u < 0 dominates the perturbation energy. In the following half-period
(74) the streak is replaced by one of the opposite sign (¢ > 0) and the dynamics of the new
streak are essentially the same as the first. This goes some way to explaining the apparent 7'/2
period within the energy budget; the flow itself has a period of 7', but the reflection symmetry
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Figure 5: (a-f) Snapshots of (e) in the y-z plane for six times #; = 21.11, t, = 21.25,
t3 =21.35,14 = 21.50, t5s = 21.58, and #6 = 21.67. The right column of each snapshot
shows the corresponding instantaneous laminar velocity U (teal) and normalised shear
(2m)~12(8U/dy) (red) with black dots at its maximum and minimum. (g) Time-evolution
of the average vertical distribution of energy (e),, . and its instantaneous maximum (red
dashed). (h) Average spanwise distribution of energy (e).y.

305 after a time T'/2 results in pre-periodic motions that are not apparent in positive-definite
306 quantities such as the energy.

307 Figure 6(e) shows the instantaneous vertical distribution of the x—z-averaged kinetic
308 energy, {e), ., along with the locations of its global maximum and oblique lines of slope
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(a) t2 = 21.25, ymaxq(e),) = 1.26 (b) 5 = 2135, ymaxq(0,) = 1.70

Figure 6: (a-d) Snapshots of high-speed (#s,4x = 0.5max{u}, purple) and low-speed
(Usmin = 0.5min{u}, orange) streamwise velocity isosurfaces, at times ¢ = 1,, t3, t4, and
ts. Streamwise-averaged perturbation energy (e), is plotted on the plane z = 0. The
instantaneous height of maximum perturbation energy (ymax{(e),}) is plotted on the
planes x = 0 and z = L, with a dotted line. The instantaneous laminar flow is plotted on
the planes z = 0 and z = L, (centred at x = L, /2). (e) Time evolution of the x, z-averaged
perturbation energy (e)y.,, its instantaneous global maximum (continuous line), and
oblique lines (dashed) with slope 24/7r. Dotted teal and red lines indicate locations of zero
laminar shear, labelled y,; and y_, defined in section 4.1.

24/m, showing that the laminar flow propagation speed controls the spatial location of these
nonlinear structures on the edge. The no-slip boundary condition (# = 0 at y = 0) prevents
the streaks from forming at the wall, and instead they begin to form around y ~ 1/4 and
reach substantial amplitude at y = 1. As the streaks migrate upwards, they begin to lose a
substantial amount of energy around y ~ 2 and essentially do not propagate into y > 3 (this
will be demonstrated explicitly in the following section). Although the laminar flow, and
hence also the energy production rate #, decays exponentially away from the wall, there is
nothing inherently preventing these streaks from continuing to propagate to y — oo while
viscously decaying through D); therefore, there must be some further dynamics contained
within the other flow components that essentially cut-off the streaks beyond a maximum
height. The exact physical mechanisms driving these observations will be explained in the
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Figure 7: (a) Snapshot at ¢ = 20.35 of high and low speed streaks, as in figure 6 for the
narrower domain. (b) The corresponding perturbation energy from edge tracking.

following section. A supplementary movie accompanying figure 6 is available, which shows
the streak dynamics and includes a jump of the streaks from the centre of the domain to the
spanwise boundaries.

Edge tracking was also performed at a higher Reynolds number of Re = 1200 using
the same computational setup, and the dynamics were quantitatively similar to those at
Re = 1000. Due to the moderate Reynolds numbers used and the small gap between them,
no clear scaling of flow structures with Re was observed. Another set of edge tracking results
were computed in a narrower domain with half the spanwise extent (L, = 4.1, using the
same spatial and temporal resolution) for Re = 1000, to see whether or not a truly periodic
edge state could be identified. However, the edge trajectory in this case is significantly more
chaotic than in the wider domain, and no period of nearly periodic motion can be identified
for further analysis of the flow structures. Figure 7 shows a snapshot of the flow in the narrow
domain, from which it is seen that the structures are similar to those of the wider domain
discussed above. However, the flow is too confined, and alternating signed streaks ‘compete’
for space as they form and migrate upwards, and a consistent pattern of dynamics does not
clearly emerge. The next section will focus entirely on the wide domain with Re = 1000 and
demonstrate that rolls in the y—z plane, which sustain the streamwise streaks during their
migration, span the entire domain, and it is likely that these rolls do not have enough room
in the narrow domain to establish a sustained periodic flow.
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4. The Periodic Self Sustained Process (PSSP)

To fully understand the streak dynamics, including their creation, migration, growth, and
sudden decay, we analyse the effect of wall-oscillation on the self sustaining process, by
decomposing the full perturbation velocity into its streak, roll and wave (SRW) components.
The average of the velocity field over the x-direction, U = (u),, can be decomposed
into streak and roll components as U = Us + U, = (U,0,0)5 + (0,V,W),. The full
perturbation velocity field can be expressed as

Us+U,+0=(U,0,0); + (0,V, W), + (i1, ), W), 4.1)

where the subscript s denotes the streak velocity, the  subscript denotes the roll velocity, and
the w subscript and hat decoration denotes the remaining part of the fully three-dimensional
velocity field. Introducing this decomposition into (2.2), we obtain momentum equations for
U, VvV, and W:

o (ai; 2
ou Reu% e {20 20| ot (42)
ot ay 0x; 6xj6xj
oV v o (i),
+R —=——-R 4.3
ar TR UG = oy RS, ax,ax, 43
oW ow o  0(wi;) W
+R =————-R 2 , 44
Tor ¢ Uigx; 0x; 0z ¢ Ox; " 0x;j0x; @4
where & = (p). is the the x-averaged pressure. Mass conservation within the SRW
decomposition reads
oV ow oi;
=0 d =0 4.5
Ay T 0z an ox; (4.5)

and momentum equations for the wave components # can be obtained by subtracting (4.2—4.4)
from (2.2), though the resulting equations are not needed here.

4.1. Cycle description and energy transport dynamics

To unveil the dynamics among streaks, rolls and waves, we analyse the evolution of the
energy within the SRW—decomposition. Defining the streak energy density as & = %(L[z,
the roll energy density as &, = 5 L (V2 + ‘W?), and the x-averaged wave energy density as

= (2 |2]%),, we have by construction that the x-averaged total perturbation energy density
8 = (e)yisgivenby & = E;+E, + &, given that the cross-terms vanish. The SRW equations
(4.2-4.4) may be converted into evolution equations for the streak energy density and roll
energy density, and an equation for the x-averaged wave energy density can be constructed

by observing that %—? =98 _ 95 _ %. These equations are presented in appendix A.

The energy density evolution equations contain flux terms which move energy within the
domain, in addition to production from the laminar flow, transfer between rolls, streaks and
waves, and dissipation terms. To better elucidate the key mechanisms sustaining the motion,
we integrate the equations over the whole domain to give evolution equations for the total



372

373

374

375

376
371
378
379

380

382
383
384
385
386

387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

14
streak Eg = (E;)q, roll E, = (&,)q, and wave E = <8>Q energies:
dE;

dr = <Pf—>s>§2 - <7;—>W>Q - <DS>Q’ (4.6)
dE,
(ft = (7;v—>r>§2 - <Dr>Q, 4.7)
dE
E = (Pf—wv)Q + <7;—>W>Q - <7:v—>r>£2 - <DW>Q- 4.8)

The production (%), transfer (7°), and dissipation (9) terms are also given in appendix A.
Their indices indicate the source and the destination of the transferred energy (in the case
of # and 77) or the component which is dissipating energy (in the case of 9), where the
laminar flow is denoted by ¢. For example, the term

ou

Pr_s = —ReUV — 4.9)

dy
corresponds to the production of perturbation energy by the laminar flow, creating streaks
U (and mediated by the vertical roll component V). This is the process that creates streaks
via the so-called lift-up mechanism, which forms part of the Self-Sustaining Process (SSP)
(Waleffe 1997). The volume-average of each energy component in equations (4.6—4.8) are
plotted in figure 8 along with the total energy E whose evolution in terms of these components
is

dE

i P(t) = D(t) = (Pros)a + (Prowia) — (De)a +(Dr)a + (Dw)a).  (4.10)

Figure 8 clearly shows a scale difference in energy and energy transfer rate terms between
rolls, streaks and waves. Figure 8(a) shows that the most energetic component is the streaks,
with energy that is almost indistinguishable from the total energy. The second most energetic
structures are the waves, which have an average energy around one and a half orders of
magnitude smaller than the streaks, and the rolls are the least energetic structures with
average energy around two orders of magnitude smaller than the streaks. This hierarchy is
as expected from vortex-wave interaction theory (Hall & Smith 1991), albeit with relative
sizes that don’t match the high Reynolds number asymptotic theory, owing to the relatively
modest Reynolds number used here (see Hall & Sherwin 2010).

Figure 8(b) shows that the scale differences persist among the energy transfer terms. The
largest two terms in the energy budget are the production term transferring energy from
the laminar flow to the streaks through the lift-up mechanism, (P;—)q, and the streak
dissipation, (Dy), which dissipates most of this energy, and is almost exactly in phase with
and of the same magnitude as (Pr_,s)q. The small amount of streak energy gained from
production which is not dissipated is transferred to the waves via (75, )o. This transfer
rate is around an order of magnitude smaller than the streak production and dissipation,
and is responsible for powering the smaller amplitude waves. In turn, this energy transfer
to the waves is balanced almost entirely by the wave dissipation (D,,)q, which is of a
similar magnitude as (7)o and in phase with it. The waves receive little energy via
production from the laminar flow, (P¢—)q. This production term oscillates somewhat
randomly between positive and negative values (backscatter onto the laminar flow) and
essentially averages to zero over long periods of time; the laminar flow is stable to linear
waves at this Reynolds number (and in this geometry). This production term essentially plays
no meaningful role in the wave dynamics as its average magnitude is around an order of
magnitude smaller than either the transfer to the waves from the streaks, (75—, )q, or the
wave dissipation, (D, ). The waves lose a small amount of energy to the rolls, via the
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Figure 8: (a) Time series of energy components E,: E (black), E (red), E, (green), and
E (teal) . (b) Time series of individual production, transfer, and dissipation terms (labelled
Eaﬁlg): (Prs)a (light red circles), (Pr_w)o (dark red squares), (75— o (light green
upwards triangles), (7, )q (dark green diamonds), (Ds)q (dark teal crosses), (D, )a
(mid teal filled circles), and (D,, )q (light teal downwards triangles). (c-d) The same as
(a-b) for 20.75 < ¢ < 21.9. Dashed sections of (Pr_,, ) are negative values.

transfer term (7, )q, Which is also an order of magnitude smaller than either (7;_,,, )q or
(Dy)a. The transfer from the waves to the rolls, (7., )q, is of the same magnitude and
nearly in phase with the roll dissipation, (D, )q.

A closer visualisation of the time series is plotted in figures 8(c,d) for 20.8 < ¢ < 22.
In 8(c), it can be seen that the reduction in total streak energy leads to an increment in the
total wave energy, which in turn leads to an increment in the total roll energy. The ‘cascade’
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Figure 9: Schematic representation of the energy transfer cycle for the Periodic
Self-Sustaining Process (PSSP). The input of energy comes from the laminar flow formed
from the plate oscillation. This is transferred to the streaks via the lift-up mechanism due
to the action of the rolls (the role of the roles is purely advective; no energy is transferred).

Streaks dissipate most of the energy and what remains is is transferred to the waves
through linear instability. Waves dissipate most of this energy and transfer what remains to
the rolls through Reynolds stresses and the cycle repeats.

process is indicated with a tri-coloured arrow in the plot, and indicates that the energy
transfers first between the streaks and the waves, and second between the waves and the rolls.
Furthermore, as the rolls begin to gain energy, there is a subsequent increase in the streak
energy, as expected from the lift-up mechanism, and the cycle repeats. In summary, each
flow component receives and loses the majority of its energy from a single source, as in the
SSP of Waleffe (1997), but the periodic nature of the structures presented here more readily
reveals the flow of energy through the system than in other, steady, realisations of the SSP.
Additionally, it is often not made explicit that most of the energy at every step of the SSP is
dissipated, with only a little being transferred to the next part of the cycle; the largest sink
of energy is the streaks and the smallest is the rolls. This cycle is presented schematically in
figure 9, which echoes the well-known figure of (Waleffe 1997), but includes energy sinks
(dissipation) and indicates the main flow of energy using different pathway thicknesses and
circle sizes for each component of the flow.

This view of the global energies and energy transfer rates does not provide any information
on the mechanistic flow processes and flow structures involved in this cycle. It also does not
explain exactly how the flow manages to organise itself periodically, for example why the
nonlinear streaks move upward at a speed dictated by the linear laminar flow, why they stop
after a finite distance, and how the waves and rolls manage to create further streaks close to
the wall. An explanation based upon the spatial evolution of the various flow components
and spatial distribution of the energy transfer rates during the cycle is needed.
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4.2. Streak and roll dynamics

Figure 10 shows the distribution in the y—z plane of the energy transfer components £,_,s,
Dy, Twor, and D,., which are responsible for supplying and dissipating energy within the
streaks and rolls, at the times 71, 17, f3, and #4 indicated in figure 8(c,d). Overlain on each panel
are instantaneous roll streamlines and contours of high streak energy (E; > 0.25 maxg {Es}).
The laminar velocity and (scaled) shear profiles are displayed in the right column of the plot
to relate the stage of the Periodic Self-Sustaining Process (PSSP) with the stage of the wall
oscillation. These profiles are plotted alongside the normalised strain-rate magnitude of the
rolls, whose magnitude is defined as

2 2 2
(YV) 1(av 6W) +(6W) l @i

—Rey|2|[ZX) + L(EX LW (2
|SI'= Re [(ay "2\ Ty 8z

which is normalised via |S*| = |S|/maxq {S}.

The roll streamlines in figure 10 show that the overall shape of the rolls is persistent
throughout the time interval #; < ¢ < t4, forming recirculation cells of O(1) size. These cells
only slightly modify their shape over time, remaining located in the same areas throughout the
cycle; their magnitude alone oscillates in time. They form a narrow channel around z = L, /2
of upward roll velocity, and the streaks form, grow, and migrate upward in this channel. The
channel ends at a stagnation point (in the y—z plane) around y = ysp < 3 which appears to
present a barrier for the upward migrating streak. The roll velocity is horizontal away from
the stagnation point at (y, z) =~ (ysp, L;/2) and gradually turns upward, or downward back
towards the wall, at the spanwise extremities of the domain.

It is apparent from the roll structure that the streaks reside largely in a region for which
V > 0 around z = L,/2 below the stagnation point at y = ysp. In order for the streak
production rate Pr_,; = —ReUVIU/y to be positive in this region, we therefore require
that the combination U/U/dy < 0 since the sign of V is fixed. As such, a positive streak
(U > 0) can only grow when the laminar shear is negative (U /dy < 0) and vice versa. This
observation, along with the fact that the laminar flow U (y, f) is periodic, and that its features
propagate upward at a speed 2+/7, goes some way to explaining the streak migration.

To make this notion precise, we detail key features of the laminar profile. Heights with zero
laminar shear are denoted y. such that the laminar shear transitions from negative to positive
through y, (i.e. 9°U /(9yZ|y:y+ > 0) and vice versa. Locations of maximum and minimum
laminar shear are denoted y . This notation is illustrated in figure 11. We introduce the cycle
time 0 < & < 1, where the total time is t = kT + ¢ with T = 1 and k an integer, and consider
the evolution of y. (&) and y% (£). A laminar shear minima appears at the wall when ¢ = 0
and for 0 < & < lislocated at y* (£) = 2+/n€. After halfacycle, at € = T/2 = 1/2, alaminar
shear maxima appears at the wall and for 1/2 < & < 1 is located at y% (£) = Vx(2€ - 1).
Above the wall at the beginning of the cycle, the laminar shear changes sign at y, = 3/ /4.
As time advances, this location of zero shear is given by y, (&) = Vr(2€ + 3/4). When
& = 1/8, another location where the laminar shear changes sign appears at the wall, and for
1/8 < & < lislocated at y_(&) = /m(2€ — 1/4). When & = 5/8, a final zero shear location
appears at the wall and its location is given by y, (&) = \Vr (26 — 5/4).

These locations are illustrated at four times within the cycle in figure 11. They divide the
region around z = L, /2 below the stagnation point into locations where the production term
Pr_,s can create positive streaks (AU /dy < 0, coloured pink) and locations where it can
create negative streaks (0U/dy > 0, coloured teal). These regions are also overlain on the
energy transfer term distributions and laminar flow profiles in figure 10. The schematics in
figure 11 make a further distinction within each region; for a substantial production term we
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Figure 10: Distribution in the y—z plane of the energy transfer components Pr_,s, Ty,
Dy, and D, at times #; to 74, normalised by each of their maximum values across the time
window 7] <t < 14. Roll streamlines are coloured by the local roll energy. Red contour
lines show high streak energy (Ey > 0.25 maxg {E;} ). Shaded Production Windows are
shown for negative and positive streaks (PW_, teal, and PW., pink). The right-hand
column shows the laminar velocity (green) and normalised shear (orange) along with the
normalised roll strain rate S* (grey dashed) defined in (4.11).
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Figure 11: Schematics of four different stages of the streak development and upward
migration at the centreline between the roll recirculation cells. Light red and teal represent
Production Windows (PWs), regions of the flow where the production term P, is
positive. In darker red and teal, Streaks Development Bands (SDBs) are presented. These
are subregions of the PWs where $,_, is of substantial size, and therefore regions where
streaks develop. The PWs and SDBs migrate upwards at a speed of 2+/m according to the
locations of y. (¢) defined in the text and can sustain positive (PW., SDB., U > 0) and
negative (PW_, SDB_, U < 0) streaks. In (a), there is a PW_ between y, and ygp which
is intentionally omitted for clarity of the discussion.

require that both AU /3y and <V are large enough to provide a meaningful energy input to the
streaks. We therefore expect to have reduced streak growth around y = y. (where dU/dy
is small) and around y = O (where V is small). This defines ‘Streak Development Bands’
(SDBs) which are indicated with a darker shade in figure 11.

To relate this scheme to the dynamics observed in figure 10, at the beginning of the cycle
(& = 0) the region 0 < y < y,(0) = 3+/m/4 has negative laminar shear U/dy < 0 and
positive vertical roll velocity V > 0 around z ~ L,/2, meaning that a positively-signed
streak (U > 0) grows in this region. However, due to the no-slip condition at y = 0 (the
boundary conditions ensure that V o y? near the wall), V is too weak near the wall to
produce large values of P,_,;. The streak therefore grows to a spatial extent of O (1) within
a Streak Development Band (SDB), with its lower edge a little separated from the wall.

A little after the beginning of the cycle, at £, = 0.11, the laminar shear maxima y* (¢) has
moved upwards to the lower edge of the streak, as shown in figure 10(a). At this time, the
streak has essentially not moved from its initial position at & = 0, but has become stronger
and larger (c.f. figures 8(c) and 6(e) respectively) and the production P,_, is centred in the
middle of the streak. There is substantial dissipation 9y in a ring around the streak, owing
to increased streak velocity gradients.

The total streak dissipation is lower than the total production ({Ds)q < (Pr_s)q) for
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&1 < € < & = 0.25 and so the streak continues to grow in magnitude during this period.
However, it starts to migrate upwards, as do the concentrations of 9Dy and P, as can
be seen in figure 10(b). After & = 1/8, the region 0 < y < y_(¢&) has positive laminar
shear U/dy > 0 and positive vertical roll velocity V > 0, so that any positively-signed
streak velocity U > 0 in this region experiences negative production P,_,g, i.e. the lift-up
mechanism acts to destroy the streak in 0 < y < y_(&). This ultimately means that the
streak cannot exist (with a significant amplitude for any significant period of time) outside
of y_(¢) < y < y4+(&). This region with positive production migrates upward at speed
dy_/d¢ = dy,/dé = 2+/m, and hence so does the streak. Interestingly, the streak advection
term ReVOU /Iy in (4.2) has an advection velocity ReV around 2 to 3 times larger than
2+/mr within and around the streak (depending on the time during the cycle), so that the streak
is effectively hindered from migrating upward with the roll advection since any part of the
streak crossing the upper edge of the SDB at y. is subject to destruction from P,_,s < 0.

As this upward migration proceeds, the magnitude of the laminar shear decreases
exponentially in time; within y_(&) < y < y.(£), we have |0U/dy| < vme ?¢. The
streak energy saturates at a time & < & < &3 = 0.35 (see figure 8(c)) and at &3 the total
streak dissipation is larger than the production ({(D;)q > (Pr—s)q). Throughout the period
of growth and uplift, £; < & < &3, the centre of the streak and its production remain above
the location of the minimum laminar shear, y* (¢). Instead, the streak centres itself in the
middle of the production region y_(£¢) < y < y+(&). This can be seen in figures 10(b,c) in
which y* (¢) is located around a quarter of the way up the streak (it is straightforward to
show that y, —y_ =4(y* —y_)).

However, the ultimate fate of the streak is not to be gradually lost to dissipation while
continuing to move upwards as the production rate continues to decrease exponentially.
Instead, the upward migration of the production window y_(¢) < y < y.(&) eventually
moves the centre of the streak on top of the roll velocity stagnation point, see figure 10(d) at
&4 = 0.5. The streak is essentially ripped apart in the stagnation point due to the high strain
rate in this region (a peak of global strain-rate magnitude is observed around the stagnation
point in figure 10 (a-d) and its magnitude is around 15 when the streak crosses it), substantial
wave activity is created (see figure 8(c,d)), and the local streak dissipation rapidly destroys
what remains. Meanwhile, a new streak is formed close to the wall, below y_ (&) = 3y /4,
in which the laminar shear is positive (OU/dy > 0) and the vertical roll velocity is (still)
positive (V > 0), and so the production term P,_,s produces a negatively-signed streak in
this region (U < 0). The cycle then repeats itself during 0.5 < & < 1, with the sign of the
streak reversed from the description above.

This description of the streak cycle predicates that the roll velocity magnitude is sufficient
for the lift-up mechanism to act against the laminar shear in the correct way. The rolls are
sustained by energy transfer from the waves (7,,—,,), and dissipate energy in regions where
vertical and spanwise velocity gradients are concentrated (9,.). Figures 10(a-c) show that
the roll dissipation is concentrated around the stagnation point in a ‘figure eight’ pattern
throughout most of the cycle. This is the location where the streamlines change direction
from vertical to horizontal most rapidly, and therefore where the largest gradients are expected
to be located. The magnitude of the dissipation decreases from &; to &4. At the end of the
(single) streak cycle, ¢ = &4 = 0.5, there is also dissipation in the area between the old streak
and the new streak, within which ‘W changes sign. This dissipation region is also present at
time &1, between the previous streak and the new streak that has just developed.

Just after the beginning of the cycle, at &1, there is a peak in the transfer from the waves to
the rolls, 7, (figure 10(a)). This is from wave activity associated with the final destruction
of the previous streak at the stagnation point. As such, the energy transfer from waves to
rolls is concentrated around the stagnation point, and acts primarily to accelerate the rolls
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horizontally (‘W) away from the stagnation point. This energy transfer takes the form of a
wave Reynolds stress (see appendix A), and a detailed description of which terms contribute
to this Reynolds stress is given in the next section. Mass conservation ensures that this local
forcing enhances the rotation of the entirety of the cells, and concentrates the streamlines
within the stagnation point. At the intermediate times &, and &3, the energy transfer from
the waves decays (figure 10(b,c) which leads to the streamlines receding from the stagnation
point, and expanding the dissipation pattern away from it.

By the end of the cycle at & = &4, the total energy transfer from the waves to the rolls,
(Tw—r)a, is halfway to its maximum value (see figure 8(d)), and its distribution starts
resembling that observed at time & (see figure 10(d)). This reflects the fact that the destruction
of the old streak is underway by time &4, and waves are already being produced.

4.3. Waves

To complete the description of the PSSP, the distribution of the wave energy density &, the
transfer from the streaks to the waves, 7;_,,, and the wave dissipation D,, must be explored.
At high Reynolds number, wave energy, and its transfer terms, are expected to concentrate
along lines of constant total streamwise velocity, U + U = ¢, where c is the (real) phase
speed of the waves (so-called critical layers). Figure 12 shows the wave energy components
&, Ts—ws> Twor and D,, at the same times ¢ to 74 along with contour lines of constant
total streamwise velocity (critical layer candidates). The timing and spatial distribution of
the wave energy and its transfer terms agree with the dynamics deduced when analysing the
rolls. In particular, the wave energy & is high during the streak destruction period of the
cycle (figure 12(a,d)), and the energy concentrates around the stagnation point where this
destruction occurs. As expected, the wave dissipation D,, is also high during these periods
and overlaps spatially with the wave energy. A closer inspection of figures 12 (c,d) indicates
that, in the lead-up to the streak destruction, the wave energy concentrates in the region
between the upper part of the streak and the stagnation point. This indicates that the streak
begins to lose stability (to waves) before it completely overlaps with the region of largest
strain rate.

Since the laminar flow decays exponentially away from the wall (|U| < 0.1 for y > 1.3),
but the streaks are O(1) before they dissipate, contours of total streamwise velocity U + U
in the vicinity of the streak are strongly shaped by the streak velocity U and are similar to
contours of the streak velocity alone for y > 2. During the middle part of the cycle, when
the streak is rising from its initial position towards the stagnation point (figure 12(b,c)) this
results in open contours of U + U bending up and around the streak. However, at the end
of the cycle (and beginning of the next cycle), a region of closed contours forms around
the stagnation point (figures 12(d,a)). The waves are most active during this time, and so
they become ‘trapped’ in this region by the closed total streamwise velocity contours. This
trapping causes the transfer to the rolls, 7, _,,, to be focused around the stagnation point.

Figure 13 shows the two transfer terms, 7;_,, and 7,,_,, in more detail around the
stagnation point when the waves are most active at time 7. The transfer from the waves to
the rolls, 7,,_,, is focused around the contour ¢ = —0.075, and so the waves are essentially
stationary during the relatively short time that they are active, since they would otherwise
take a time Ly /c = 110 to traverse the streamwise length of the domain. Figure 8(d) shows
that 75_,,, and 7, _,, are in phase, so that the energy transfer from streak to waves and then
from waves to rolls takes place almost simultaneously within this closed contour region.
However, figure 13 shows that the spatial distribution of the two terms is different; transfer
to the waves (75_,,) is centred in a region just below the stagnation point, but transfer to the
rolls (7,,—) ejects fluid horizontally away from the stagnation point, as discussed above.

To complete the picture of the wave dynamics, figure 13 also plots vertical profiles at



22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4
3.
=245
10
0
4
3.
=24
10
0
0 2 4 6 8 0 2 4 6 8
z z

N (c) t5 = 21.35

WA O=2MNWH

2 4 6 8 0 2 4 6 8
z z
¢ (d) ty = 21.50 T
4
3
=21
1k
0
4
3
=21
1k
0

Figure 12: Distribution in the y—z plane of the energy transfer components 75—, Tyw—r»
é, and D, at times #; to 74, normalised by each of their maximum values across the time
window #; < ¢ < t4. Red contour lines show high streak energy (Es > 0.25 maxg{&E;}).
Dotted lines ranging from orange to brown are contour lines of total streamwise velocity
U+ U = c for —0.1 < ¢ < 0.1. The stagnation point is indicated with a circle marker.

603 three spanwise (z) locations (through the stagnation point, z¢, to its left, z;, and to its right,
604 zg) of the streak and roll velocities, along with wave Reynolds stress divergence terms.
605 Figure 13(a) shows that, in the centre of the streak, high streak velocity combines with the
606 spanwise gradient of the spanwise-streamwise wave Reynolds stress (9(iw)/dz) to control
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Figure 13: Left: a reproduction of figure 12(a) at t = #; of (a) 75—, and (b) 7,,—, in more
detail around the stagnation point. The thicker dotted line corresponds ¢ = —0.075. Right:
vertical profiles of the streak, roll, and wave Reynolds stress terms that contribute to the
energy transfer terms at the three spanwise locations z7,, z¢, and zg shown on the left.

the energy transfer from streaks to waves, 7;_,, (see the profiles for z = z¢). Physically,
this represents waves extracting streamwise momentum from the streaks and redistributing
it into spanwise wave momentum. The profiles observed at z = zy and z = zg in figure
13(b) show that the spanwise roll velocity ‘W combines with the spanwise gradient of the
spanwise-spanwise wave Reynolds stress (0(Ww)/dz) to control 7, _,,. This represents waves
depositing spanwise momentum back into the mean flow (in this case, the rolls). In particular,
although the streak velocity U changes sign every half-period and the symmetries of the
(linearised) wave equations ensure that (iiw) changes sign also, the fact that the transfer from
waves to rolls, 7y,—,,, is dominated by the sign-definite term (/) means that the roll velocity
W does not change sign, and by extension neither does V due to continuity, resulting in the
rolls maintaining their flow direction instead of reversing every half-period. This description
helps to clarify how the waves mediate the transfer of energy from the streaks to the rolls,
allowing the latter to persist and drive the cycle via the lift-up mechanism.

4.4. Wall stresses

The PSSP dynamics described above have an effect on the shear stresses (7). , exerted
on the wall by the flow. Figure 14(a) plots time series of the average laminar, streak, and
roll shear stress at y = 0, showing that these three components of the total shear stress are
separated by four orders of magnitude, with the laminar shear stress being larger than the
streak shear stress, which is in turn larger than the roll shear stress. The streak shear stress
is almost periodic, alternating between positive and negative values with a period of T and
a phase-shift of approximately 7'/2 with respect to the laminar shear stress. The roll shear
stress is irregular and remains negative for most of the time window.

A closer inspection of the phase-shift between the laminar and streak-induced shear stresses
in figure 14(a) reveals two types of motion within the edge dynamics. During 20 < ¢ < 22
and 23 < t < 25, the phase-shift between the two shear stresses is close to 7/2. At the other
times in the figure, the streak-induced shear stress shifts slightly earlier by around 7'/8 and
changes shape; rather than being nearly symmetric around each local peak value, the peaks
become skewed to earlier times. Two such features, at t ~ 22.5 and ¢ ~ 25.5 correspond to
jumps of the structure by L, /2. However, the period 26 < ¢ < 30 contains no such jumps and
yet contains the same shear stress pattern. This period is associated with slightly elevated
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Figure 14: (a) Average shear stress (7)y . at the wall due to the laminar (orange), streak
(red), and roll (teal) flows for 20 < ¢ < 30. Dashed lines indicate negative values. (b) Power
of energy transfer from the plate to the fluid due to the laminar (orange) and streak (red)
flows. Dashed, negative values indicate that the plate is transferring energy to the fluid.

total perturbation energy (c.f. figures 3(a), 5(g,h)) and streak and wave energies (c.f. figure
8(a) and the supplementary movie). The effect of this 7'/8 shift during this more energetic
period, though small, is slightly delayed total shear stress peaks, along with slightly elevated
shear stresses leading up to and during the laminar shear stress reversals. Within transitional
turbulence, which is significantly more energetic than these edge dynamics, Ozdemir et al.
(2014) observe more exaggerated versions of these two features when Re ~ 1063. This
suggests that the dynamics presented herein may relate directly to some key processes of
transitional turbulence, though future detailed investigation of this hypothesis is necessary.

To analyse the influence of PSSP on the energy input needed to maintain the plate
oscillation, figure 14(b) shows the non-dimensional power per unit area of the laminar
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and perturbation velocity fields at y = 0. These powers are given by

P U U
Y =P =(ReU — =ReU—, (4.12)
pVUO ay y=0 x.z ay
P
U =py, = rRev _(rev 2 , (4.13)
pvUo 9y ly=of , . 9y ly=of ,

where Py and Pq; are the dimensional power associated with the laminar and the perturbation
streak flows respectively. The figure shows that both the laminar and the streak powers are
periodic with a period of 7'/2. Similarly to their shear stresses, the laminar and streak power
are out of phase with each other.

Figure 14(b) also shows that positive and negative power values are different in magnitude;
the laminar power has larger negative peaks than positive peaks and so is a net consumer of
energy, whereas the streak power has larger positive peaks than negative peaks and so is a
net contributor of energy to the plate motion. The back-and-forth motion of the plate must
overcome the inertia of the fluid in order to repeatedly reverse its direction, and so the average
energy transfer over each cycle must be from the plate to the fluid. However, there are periods
within each cycle during which energy is instantaneously transferred back to the plate, as
the inertia of the fluid drives the plate in the same direction as it travels. These windows
are short; the laminar flow shear force F, is in the same direction as the plate velocity U
for 1/8 < ¢ < 1/4and 5/8 < ¢ < 3/4 (for a total of 1/4 of the whole cycle), as shown in
figure 15. Furthermore, the power of energy transfer from the laminar flow back to the plate
is substantially smaller than during the rest of the cycle when the laminar flow gains energy
from the plate. On the other hand, the perturbation streak flow is a net contributor to the plate
energy (albeit at a substantially lower power), reducing the total energy consumption. The
relative timing during the cycle means that the streak inertia contributes most to reducing
the power transfer from the plate when the laminar shear force is most strongly opposed to
the plate motion.

5. Conclusions

In this work, we characterised and analysed the flow structures of an edge state in the
oscillatory Stokes boundary layer. We used DNS to perform edge tracking of the manifold
that separates flow trajectories which either re-laminarise or become turbulent. The edge
was tracked for approximately 40 diffusive time units for Re = 1000. The edge dynamics
are organised into streak-like structures of size O(1), which originate a little above the
oscillating wall and migrate upward at a speed of 2+/m (the phase speed of travelling features
of the laminar flow), dissipating around y < 3. This behaviour is repeated cyclically (twice
within each wall-oscillation cycle), and results in alternating production- and dissipation-
dominated phases within each period. The formation and upward motion of the structures
occurs predominantly during the wall deceleration phase, and their loss of coherence and
eventual dissipation near y < 3 occurs during the acceleration phase. These structures
are isolated in the spanwise direction for much of the edge state trajectory, sporadically
duplicating and occupying the entire spanwise extent of the flow domain before a new
spanwise localised state emerges. We focussed on the localised flow periods in order to
understand and describe the dynamics of the edge.

We performed a streak-roll-wave (SRW) decomposition of the velocity field in order to
interpret the cycle using flow components which comprise the well-known Self Sustaining
Process (SSP) (Hall & Smith 1991; Waleffe 1997), and in doing so detailed a periodic,
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Figure 15: Power of energy transfer transfer from the plate to the fluid for 20 < < 21
(indicated by 0 < ¢ < 1 with k = 20) for the laminar (yellow) and streak (red) flows.
Negative values indicate energy transfer from the plate to fluid. In the bottom of the plot,
the sketches show the direction of the plate velocity and the laminar shear force exerted on
the plate.

spatially evolving version of the typically steady or confined SSP. The rolls are composed of
four counter-rotating recirculation cells of diameter ~ L, /2 that converge into a stagnation
point at a height ysp < 3. The rolls are persistent, only slightly modifying their shape over
the cycle, and this relatively unchanging flow component allows for the so-called Periodic
Self Sustaining Process (PSSP) to be generated.

The stages of the cycle can be summarised as follows: (i) at the beginning of the cycle,
the rolls lift high-velocity fluid near the oscillating wall upward to create a large velocity
defect, creating and sustaining the streaks, (ii) once a streak has formed, it can only continue
to grow and exist within a region having the same sign of laminar shear as when it was
created, and regions of constant laminar shear sign migrate upward at a speed of 2+/x, thus
controlling the upward migration of the streaks, (iii) the upward moving streaks eventually
reach the stagnation point at ysp < 3 and cannot be transported any further owing to a
reversal in the sign of the streak production rate, and are instead torn apart by the stagnation
point, dissipating while transferring a small amount of energy to the waves, (iv) lines of
constant total streamwise velocity (potential critical layers) trap the waves in the vicinity
of the stagnation point, and the waves transfer a small amount of energy to the rolls via a
Reynolds stress directed in the spanwise direction away from the stagnation point, (v) mass
conservation within the roll system ensures that the upwards roll velocity where the streaks
are created maintains its energy against dissipation, thus sustaining the cycle by creating
a new (oppositely signed) streak. The dynamics of the edge at Re = 1200 are quantitively
similar to those at Re = 1000, although no clear scaling between the two Reynolds numbers
was observed, due to their modest size and small separation. Additionally, edge dynamics in
a narrower domain at Re = 1000 were somewhat chaotic due to their confinement, although
qualitatively similar structures were observed.

Finally, a brief analysis of the effect of the edge dynamics on the wall shear stress and power
consumption was performed. The shear stress exerted by the streaks contributes (slightly) to
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reducing the energy needed to move the plate, and this effect occurs when the laminar flow
is extracting energy from the plate with the most power.

The PSSP unveils a fundamental mechanism by which streaks may be raised away from the
laminar boundary layer, growing during the deceleration phase and with a phase-lag to the
laminar flow. Were this process to occur at a slightly larger amplitude away from the edge state,
then presumably adjacent streaks would readily combine into hairpin vortices and deliver
spanwise ejections into the free stream which break down to turbulence, as in the observed
bypass transition process. This work therefore provides evidence towards a key component
of bypass transition, that of streak growth and regeneration, being fundamentally tied to
physics within the boundary layer itself and its self-contained interaction with the background
laminar flow. Confirmation of this would require an analysis of the linear stability properties
of the edge trajectory, or the computation of its optimally growing disturbances (see, e.g.
Andersson et al. 1999; Luchini 2000; Cherubini & De Palma 2015; Firano et al. 2015).
A careful analysis of such disturbances for this fully three-dimensional, time-varying edge
trajectory represents a significant future endeavour. We also note that the streaks presented
here bear some resemblance to those found in other oscillating shear flows, particularly large
laminar separation bubbles (Gaster 1966; Pauley et al. 1990) and structures associated with
their slow mode of oscillation (Cherubini et al. 2010a,b; Rodriguez et al. 2021; Verdoya
et al. 2021; Malmir et al. 2024). However, a direct comparison between these objects is not
easily made within the current work.

It remains to be seen how the structures in the PSSP scale with Re and to what extent
the structures in fully-developed Stokes-layer turbulence resemble the edge state PSSP
described herein. Repeated, extensive attempts were made to converge dynamics on the
edge to a periodic orbit using a Newton—-GMRES—-hookstep solver but to no avail, potentially
suggesting that any coherent edge state structures are quasi-periodic. Though computationally
expensive, a fully localised edge trajectory in a large domain should be sought. Not only
would such a structure be most physically relevant, it may also represent truly periodic
behaviour if the quasiperiodicity of the results presented here owe their origin to interactions
between neighbouring streaks through the periodic boundaries. Nevertheless, the current
identification and full description of periodic self-sustaining motion within the oscillating
Stokes boundary layer sets the groundwork for interpreting its structural dynamics alongside
better studied steady or confined shear flows.

Supplementary data. A movie accompanying figure 6 is available.
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Appendix A. Energetics of the SRW decomposition

Projecting the streak equation (4.2) onto the streak velocity field U, we obtain

08, 08,

0 (il 2¢
+Ret; 22 = _reluv?Y vy ay), |, o8, _ouou

(9Xj +(9xj(9xj_§j(9xj’
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where & = %‘LI2 is the streak energy density. Projecting (4.3) onto V' and (4.4) onto ‘W,
summing the resulting equations, we obtain
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where &, = %(‘V2 + ‘W?) is the roll energy density.

By construction, & = & + &, + &, where & = (e), is the x-averaged total energy density
and & = (% |f1]?), is the x-averaged wave energy density, given that the cross-term (U - @t),

in & vanishes since U does not depend on x and (@), = 0. Therefore, the equation for the

ineti S i 9E _ 98 _ 9&s _ 9§,
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which leads to

9& 0& A p)x U oU; o(d;i )
9& | poqs. 98 _ _ “reliany Y L aa .
o T RUiGy P K T A P i o
928 oi; O,
_ (Mo A3
+6xj6xj <8xjo"?xj>x ( )

Integrating these equations over the whole domain gives evolution equations for the total
streak Eg = (E;)q, roll E, = (&,)q, and wave E = (E)q energies, and defines production
(P), transfer (7), and dissipation (D) rates associated with the laminar (£), streak (s), roll
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(r), and wave (w) components of the flow:
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