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A theoretical and experimental study is presented of the one-dimensional
compression of a networked suspension. Particular attention is given to rel-
atively rapid compression where we extend previous works by including an
elasto-visco-plastic constitutive relation. Solutions of a one-dimensional model
are presented, and asymptotic limits explored, for compressions controlling
either displacement or load. The results are compared to complementary lab-
oratory experiments using cellulose fibre suspensions, with the material func-
tions appearing in the model calibrated by independent experiments. Mea-
surements of load and local solid velocity as a function of displacement during
compression and unloading gauge the importance of elastic effects. The com-
parison between experiment and theory is satisfying, demonstrating a dra-
matic improvement over existing inelastic constitutive models in reproducing
the observed differential spatial compaction.

I. INTRODUCTION

The consolidation of a saturated porous material features in a great many
problems in geophysics and engineering, ranging from the compaction of soils,
to industrial filtration and the de-watering of suspensions. Models for these
problems are often founded on two-phase flow theory, with Darcy’s law de-
scribing the fluid flow through the collapsing solid and the stress decomposed
by Terzaghi’s principle into the fluid pore pressure and an effective solid stress.
In the classical theory of poroelasticity (e.g. Refs. 1–3), the effective stress is
assumed to originate from the elastic response of the solid matrix. For suspen-
sions, this stress is more commonly assumed to reflect plastic re-arrangements
or deformations of the interconnected solid particles4–7. Either way, a simple
constitutive description follows from prescribing the effective stress in terms
of the local solid volume fraction, and whether this stress has an elastic or
plastic origin becomes largely irrelevant.

Despite this classical approach, there is no special reason for assuming that
the effective stress is a function of purely the solid fraction, other than one
of expedience. Indeed, the compaction of suspensions can show distinctive
rate-dependence and hysteresis during cycles of loading and unloading8–15,
demanding a richer constitutive description. For example, for suspensions of
cellulose fibres or saturated paper sheets, it is commonly assumed that plastic
rearrangements of the cellulose matrix give rise to network strength. Never-
theless, in the de-watering of suspensions of cellulose fibres or the swelling of
paper under capillary imbibition, it has been found that the solid stress must
be rate-dependent in order to reconcile theoretical models with experimental
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observations15–19. There is also much evidence from the industrial processing
of pulp and paper that elastic stresses can play an important role in suspen-
sions of cellulose fibres10,11,20–22. Similar contributions from plastic, elastic
and viscous stresses feature in the deformation of soils and thick pastes (e.g.
Ref. 23).

Such considerations motivate the current paper: we introduce and explore
a simple model for the consolidation of a two-phase material, allowing for an
elasto-viscoplastic solid stress. Such an approach is not new, with develop-
ments in plasticity theory already extended to two-phase formulations (e.g.
Ref. 1). By building on the framework of nonlinear elasticity, however, and
in particular accommodating finite three-dimensional strains, the constitu-
tive description becomes somewhat daunting and lacks transparency. For the
present task, we are inspired by constitutive models for single-phase complex
fluids that mix plasticity with visco-elasticity, or equivalently, elasticity with
visco-plasticity. More specifically, as a prescription for the stress in the solid
phase, we employ a particular model formulated by Saramito24 that adds a
plastic yield stress to the Maxwell model of a visco-elastic fluid (in one spatial
dimension; for higher dimensions the yield stress is added to an Oldroyd B
model). This description has the advantage of simplicity and transparency:
the associated material parameters or functions can be calibrated with simple
experiments and idealized consolidation problems can be studied with only
modest effort. An important assumption is that the chief price that must be
paid by using this description is one of quantitative accuracy, and no critical
physical effects are omitted.

With the constitutive model in hand, and incorporated into a two-phase for-
mulation, we explore an idealized one-dimensional consolidation problem; the
familiar “coffee press” configuration. With a solid stress that depends purely
on solid fraction φ, the mathematical formulation of this problem boils down
to a nonlinear diffusion equation for φ that can be solved for compressions
at either fixed rate or prescribed load (e.g. Refs. 2, 25–29). The impact of
adding to this model a rate-dependent solid stress with the form of a simple
bulk viscosity was considered in15; earlier models incorporating viscoelastic
constitutive laws were presented by9,30–33. Our goal here is to consider the
elasto-visco-plastic version of the problem, providing a theoretical discussion
complemented by experiments with suspensions of cellulose fibres. Impor-
tantly, we proceed beyond the dynamics of compression at constant speed
or load, allowing the press to slow, stop and even unload, all of which can
potentially set the stage for differentiating plastic deformations from elastic
ones.
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FIG. 1. Sketches showing the constitution of each material element in our model

elasto-visco-plastic medium (left), and the four simplest types of quasi-static com-

pression dynamics (right; a-d). On the right, the light blue shading indicates when

the material has yielded, the black (solid or dashed) lines show PY (φ) and the red

(solid or dashed) lines indicates F̂ (φ). Quasi-static compression follows either PY (φ)

or F̂ (φ) depending on their relative magnitudes; the sections of these curves that

are followed are drawn by solid lines (and are dashed otherwise). The grey shaded

rectangles illustrate the response when compression is interrupted by a cycle of lim-

ited unloading and reloading. If this response is elastic, but begins from a point

on the compressive yield stress curve, the unloading-reloading follows a translated

elastic curve F̂ (φ) + constant indicated by the red dotted lines.

II. CONSTITUTIVE MODEL

A. Statement of the model

To describe the constitutive behaviour under one-dimensional compression,
we assume that solid stress originates purely from elastic deformation provided
it does not exceed a critical stress. Once that threshold is exceeded, the solid
also deforms plastically. For a spatially uniform medium, the solid effective
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(compressive) stress P̂ satisfies

1

E(φ)

dP̂
dt̂

+
1

Λ̂(φ)
max

(
0,
|P̂| − P

Y
(φ)

|P̂|

)
P̂ = −ė, (1)

where the compression (strain) rate is

ė ≡ −1

φ

dφ

dt
(2)

(− log φ being the one-dimensional logarithmic or Hencky strain). The consti-

tutive relation (1) incorporates a yield condition at |P̂| = P
Y

(φ), below which

the stress satisfies the elastic law, dP̂/dt = −E ė with bulk modulus E(φ).

Above the yield condition, for |P̂| > P
Y

, deformation occurs with a bulk vis-

cosity Λ̂(φ). The compressive, plastic yield stress is P
Y

(φ). The model in (1)
has become popular in non-Newtonian fluid mechanics to describe single-phase
elasto-visco-plastic liquids, although here we take the material parameters to
all be functions of the local solid fraction. Pictorially, the model can be char-
acterized as placing an elastic spring in series with a ratchet and dashpot
paired in parallel, for each material element in the medium; see figure 1.

When E → ∞, elastic effects disappear from (1) to leave the viscoplas-

tic law P̂ = −P
Y

(φ) sgn(ė) − Λ̂ė for |P̂| > P
Y

. If, in addition, the bulk

viscosity is negligible (Λ̂ → 0), we finally arrive at the consolidation law

P̂ = −P
Y

(φ) sgn(ė) used in both soil mechanics (e.g. Refs. 2 and 34) and for
colloidal suspensions (e.g. Refs. 4 and 27).

The purely elastic part of the law, applying below the yield stress, is equiv-
alent to the prescription,

d

dt
[P̂ − F̂ (φ)] = 0, F̂ (φ) ≡

∫ φ

φ̌−1E(φ̌)dφ̌. (3)

That is, the effective stress is a prescribed function of the solid fraction, in the
usual manner of Biot’s theory of poro-elasticity. As commented in §I, this leads
to a solid stress model that is superficially similar to the simple consolidation
law P̂ = −P

Y
(φ) sgn(ė). However, the factor sgn(−ė) incorporates the yield-

stress hysteresis into the plastic model in place of elastic reversibility.

B. Quasi-static loading and unloading

To gain a first insight into the constitutive behaviour captured by the
model, we first consider its predictions when compression takes place quasi-
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statically. In this limit, the model displays different behaviour depending on
the relative magnitudes of the compressive yield stress P

Y
(φ) and the elastic

stress function F̂ (φ) in (3), as illustrated in figure 1. If P
Y
< F̂ , deformation

is plastic with the solid stress following P
Y

(figure 1a). For P
Y
> F̂ , on the

other hand, the material deforms elastically and P̂ = F̂ (figure 1b). The
elastic-plastic behaviour seen in figure 1(a) is familiar from the testing of soils
(e.g. Refs. 1, 2, and 34) and slurries9. Note that, in the illustrative plots we
have assumed that the solid matrix only establishes a network that can resist
stress beyond some gel point, φ = φg (i.e. P

Y
= F̂ = 0 for φ ≤ φg).

Because the material functions P
Y

and F̂ are solid-fraction-dependent, if
their functional forms are different, the compressive yield stress curve can
intersect the elastic stress function at a special solid fraction. Assuming that
only one such intersection takes place, two further possibilities then emerge,
as illustrated in figure 1(c,d). In these cases, the compression first follows the
elastic curve before yielding and following the compressive yield stress (panel
c), or vice versa (panel d).

Further implications of the constitutive law can be extracted by consider-
ing the result of interrupting the quasi-static compression by a limited cycle
of unloading and reloading. What transpires during these cycles depends on
whether the material has previously yielded on not. If P̂ = F̂ when compres-
sion is interrupted, the material elastically recovers and recompresses along
the F̂ curve during the cycle, as in figure 1(b) where the plastic yield stress is
always too large to play any role in the mechanics of the material. If, however,
P̂ = P

Y
, the material immediately becomes unyielded at the moment that un-

loading begins and deforms elastically until the cycle ends. The stress during
the cycle cannot follow the original F̂ curve, however, because an amount of
unrecoverable plastic strain has occurred along the compressive yield stress
curve. Instead, as indicated by the integral of (3), the relevant stress path-

way is a translated curve, P̂ = F̂ + constant, that intersects the P
Y

curve at
the point where unloading begins (see figure 1(a,c)). Note, however, that in

regions where P̂ = P
Y

but ∂P
Y
/∂φ > ∂F̂/∂φ, as in the lower shaded region

in figure 1(d), the material cannot recover along the elastic curve, because
in doing so it would be raised above the yield stress; in this case, the elastic
stresses must instead drive plastic deformation and the response follows the
P

Y
curve as shown in the figure.

As implied by the comparisons with experimental observations reported
next, we will be most concerned with a medium with the behaviour shown in
figure 1(a); i.e. a medium with P

Y
< F̂ , for which unloadings depart from

the compressive stress curve along steeper elastic contours under quasi-static
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FIG. 2. Compression curves interrupted by limited unloading-reloading cycles for

a hydrogel suspension. The short red lines indicate local fits to each unloading-

reloading section. The insets show the original piston position versus load data,

and the values for E(φ) extracted from the loading-reloading fits.

conditions. This type of solid matrix may well describe a suspension in which
the constituent particles can move relative to one another to consolidate, whist
resisted by frictional forces stemming from somewhat larger normal forces due
to Hertzian contact or elastic bending and collapse.

C. Experimental support

The predictions of the constitutive model for quasi-static loadings inter-
rupted by limited cycles of unloading and reloading reproduces observations
taken from experiments with suspensions of hydrogel or cellulose fibres. The
first of these experiments consisted of a relatively crude apparatus in which
a 20cm deep settled suspension of hydrogel spheres of radius 9mm was com-
pressed in a box by a plunger. The box had a 16cm×16cm square cross-section;
the plunger was slightly smaller, enabling water to freely pass around the sides
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FIG. 3. Compression curves interrupted by limited unloading-reloading cycles for

a suspension of cellulose fibres. Two tests are shown, conducted at compression

rates of 1µm/s; in the first test, the unloading rate is the same, but in the second

it is increased to 10µm/s. The red line shows the pure compression test calibrating

PY (φ). The inset shows a detail of one of the cycles, together with the fit giving

E(φ).

whilst trapping the spheres underneath. The plunger was fixed to a milling
table and its position adjusted in a series of steps with a screw. The load after
each step was measured by placing a scale underneath the box. The depth
of the hydrogel layer was measured by taking photographs from the side and
processing the images. In the second experiment, the specially designed com-
pression device reported in15,18 was used with suspensions of cellulose fibres.
In this case, the plunger position is remotely controlled, following a pre-set
compression sequence; more details of the cellulose fibre experiments appear
below in §VI. Figures 2 and 3 show sample results for tests in which cycles of
limited unloading and reloading interrupted a net compression.

For comparison, figure 4(a) shows a complementary numerical solution of
the model (1), with constitutive functions and parameters chosen as indicated
in the caption. We ignore any gel point, and set φg = 0. Note that the model
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FIG. 4. Compression curves interrupted by limited unloading-reloading cycles for

the model (1) with (E , Λ̂, PY ) = (E∗, η∗, p∗)φ2. In (a), scaled stress P = P̂/p∗
(blue curve) is plotted for ε/γ ≡ η∗U/(h0p∗) = 10 and ε/(γλ) ≡ E∗/p∗ = 4, where

U/h0 is the compression rate (see §III C) The black dashed and dotted lines display

ΠY = PY /p∗ and the translated F = F̂ /p∗ curves. For (b), we show solutions in

which the compression rate is increased so that ε/γ ≡ η∗U/(h0p∗) = 10(j−2)/2 with

j = 0, 1, ..., 4 (from blue to red). The insets show details of one of the cycles (with

the different solutions successively offset horizontally by 0.04 in (b) for clarity).
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at this stage contains no differential compaction in space due to dynamic de-
watering (which is introduced in the next section), allowing us to solve (1)
directly for a spatially uniform material with no further dynamical consider-
ations. The structure of the interrupted compression curves is similar to that
observed experimentally (for the sequence of main compression and limited
unloading-reloading cycles adopted). The finer structure of the compression
curves over the unloading-reloading cycles is a little different, however, with
the observations suggesting that a loop can open up during the cycle. The the-
oretical compression curves, in contrast, do not show loops (figure 4a). These

curves become merely shifted off the P
Y

and F̂ lines when the compression is
performed faster and we move away from the quasi-static limit; see figure 4(b)
which presents further solutions to (1) with higher strain rates. This suggests
that the loops in the experimental curves are not due to a finite compression
rate. Indeed, conducting the test shown in figure 3 a second time, but with a
faster unloading rate, leads to no obvious systematic change in the structure
of the loops arising during the unloading-reloading cycles (see the inset to
figure 3).

Note also that these interrupted compression curves can be employed to
calibrate the functions P

Y
(φ) and F̂ (φ) (or E(φ)). In particular, the main

loading sequence provides the compressive yield stress, whereas the interrup-
tions furnish the local elastic bulk modulus at the initiation of unloading (the

local slope here is ∂F̂ /∂φ = φ−1E(φ)), as illustrated in figure 2 and the inset
to figure 3.

III. DYNAMIC DE-WATERING MODEL

A. Mathematical formulation

Moving on to the dynamics of compression, we now consider a one-
dimensional, two-phase medium in which fluid flows through a solid matrix
that collapses under the action of a load σ̂(t̂) imposed by a permeable piston.
Each phase is incompressible, with constant solid and fluid densities. As
sketched in figure 5, we denote position and time by ẑ and t̂. The piston,
which retains all the solid beneath, has position ẑ = ĥ(t̂), and there is an im-
permeable base at ẑ = 0. The differential compaction of the solid is described
by the local volume fraction, φ(ẑ, t̂) and solid velocity u(ẑ, t̂); initially, the
solid matrix is uniform and motionless with φ(ẑ, 0) = φ0. The velocity of the
fluid is v̂(ẑ, t̂).

Replacing the ordinary time derivatives with material derivatives following
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FIG. 5. A sketch of the two-phase model geometry.

the local solid motion (cf.28,34), the constitutive law becomes

1

E
DP̂
Dt̂

+
1

Λ̂
max

(
0,
|P̂| − P

Y

|P̂|

)
P̂ =

1

φ

Dφ

Dt̂
, (4)

where
D

Dt̂
≡ ∂

∂t̂
+ û

∂

∂ẑ
. (5)

We embed this relation in a two-phase formulation by adopting Terzaghi’s
principle and assuming that inertia and gravity are negligible. Conservation
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of mass, Darcy’s law and force balance then demand that

∂φ

∂t̂
+

∂

∂ẑ
(φû) = 0 (6)

−∂φ
∂t̂

+
∂

∂ẑ
[(1− φ) v̂] = 0 (7)

(1− φ)(v̂ − û) = −k(φ)

µ

∂p̂

∂ẑ
(8)

∂

∂ẑ

(
p̂+ P̂

)
= 0 (9)

where p̂ and µ are the fluid pore pressure and viscosity, respectively, and k(φ)
is the permeability.

At the impermeable base ẑ = 0, we impose û(0, t̂) = v̂(0, t̂) = 0. A com-
bination of (6) and (7) yields the bulk continuity equation, which integrates
to

φû+ (1− φ)v̂ = 0,

demanding that the fluid velocity is v̂ = −φû/(1 − φ). The Darcy flux is
therefore (1 − φ)(v̂ − û) = −û, which can be introduced into Darcy’s law to
remove the fluid velocity from (6), (8) and (9) and render (7) redundant.

At z = ĥ(t̂), we demand

û(ĥ, t̂) =
dĥ

dt̂
, p̂(ĥ, t̂) = 0, P̂(ĥ, t̂) = σ̂(t̂), (10)

neglecting any flow resistance through the piston and ignoring air pressure.
The choice of the material derivative in (5) deserves some comment, as the

effective stress may not be convected with the solid velocity. Indeed Preziosi
et al.32 employ the mass-average velocity,

um =
φρsû+ (1− φ)ρf v̂

φρs + (1− φ)ρf
≡ φ(ρs − ρf )û
φρs + (1− φ)ρf

,

to convect P̂ in their formulation for a viscoelastic effective stress, where ρs
and ρf denote the fluid and solid densities. For the current problem, this choice
would allow no convection if there was no density difference between the two
phases. Moreover, in order that the model recover the elastic limit described
in §III D, the material derivative in (5) must match that implied by (6). For
these reasons, and in the interest of retaining a simple model formulation, we
therefore persist with (5). An alternative would be to replace û by c(φ)û in
this derivative, at the expense of the burden of a further material function
c(φ) (given that v̂ = −φû(1−φ)−1, which implies that all linear combinations
of the velocities of the two phases take this form).
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B. Material functions

To close the system of equations, material functions are needed to set the
dependence of the permeability k(φ) on the solid fraction and dictate the
coefficients of the constitutive law. For the permeability law, when exploring
the dynamics captured by the model, we adopt the simple power law,

k(φ) = k∗φ
−a, (11)

where a is a parameter and k∗ represents a characteristic permeability scale.
Later, when comparing theoretical results with experiments using a particular
porous medium (a suspension of cellulose fibres), we employ a more compli-
cated, but experimentally calibrated, permeability function.

The elasto-visco-plastic law requires three more material functions: for
these, we take for illustration,

P
Y

(φ) = p∗φ
n, E(φ) = E∗φm & Λ̂ = η∗φ

2, (12)

where (p∗, E∗, η∗) are again characteristic scales and n and m are parameters.
Again, we will later employ richer forms for P

Y
(φ) and E(φ) guided by calibra-

tion experiments for cellulose suspensions. The bulk viscosity is more difficult
to constrain empirically; in the interest of simplicity, and in view of previous
successes for pulp, we continue with the power-law form for Λ̂(φ) in (12).

C. Dimensionless model equations

We remove dimensions from the model equations using the scalings,

(ẑ, ĥ) = h0(z, h), û = Uu, t̂ =
h0
U
t and P̂ = p∗P , (13)

where h0 represents the initial height of the suspension, and U is the initial
compression speed. Then,

Dφ

Dt
= −φ∂u

∂z
, (14)

u = −γK(φ)
∂P
∂z

, (15)

λΛ(φ)

E(φ)

DP
Dt

= − ε
γ

Λ(φ)
∂u

∂z
−max

(
0,
|P| − Π

Y
(φ)

|P|

)
P , (16)
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where

γ =
p∗k∗
µh0U

, ε =
k∗η∗
µh20

& λ =
η∗U

h0E∗
(17)

denote dimensionless groups dictating the rapidity of dewatering and the rel-
ative strengths of bulk viscosity and a Weissenberg number measuring the
importance of elasticity. The dimensionless versions of the material constitu-
tive functions are

K =
k

k∗
, Π

Y
=
P

Y

p∗
, E =

E
E∗

& Λ =
Λ̂

η∗
. (18)

The initial and boundary conditions are

φ(z, 0) = φ0, P(0, t) = Π
Y

(φ0), (19)

u(h, t) = ḣ(t), P(h, t) = σ(t), (20)

where σ(t) = σ̂/p∗ is the dimensionless stress on the piston and we assume
that the material has been deformed plastically (by, for example, slow stirring)
to arrange it into its initial state.

Two versions of the compaction problem posed above are possible. In
an analogue of the familiar “coffee press”, one can control the position of the
piston; h(t) is then an input variable and the load σ(t), together with the solid
distribution φ(z, t), is an output. Alternatively, for fixed load, one controls
σ(t) and the piston position and φ(z, t) are output.

D. Plastic and unyielded limits

If either λ = ε = 0 or |P| < Π
Y

for all time, we recover the nonlinear
diffusion equation,

φt = [D(φ)φz]z (21)

where

D(φ) = γφK(φ)×
{

Π′
Y

(φ), λ = ε = 0
F ′(φ), |P| < Π

Y
,

(22)

(assuming that Dφ/Dt > 0, or P > 0, for ε = λ = 0),

F (Φ) = ε(γλ)−1
∫
φ−1E(φ)dφ (23)

is the dimensionless version of the elastic stress function F̂ (φ), and the prime
indicates differentiation with respect to φ. The nonlinear diffusion equation
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(21) corresponds to that used in previous work for purely plastic or elastic
solid stresses.

More generally, where the material is unyielded, the model indicates that

D

Dt
[P − F (φ)] = 0, (24)

Hence, the solid stress is known only up to that left behind by the unrecov-
erable plastic strain arising prior to the yield point: P = P0(z0, t0) + F (φ),
where (z0, t0) denote the position and time where the local material element
reached the yield stress and P0(z0, t0) ≡ Π

Y
(φ(z0, t0)). In general, this em-

beds a history dependence into the solid stress that precludes any reduction
to (21).

IV. INVESTIGATING THE MODEL

To study the dynamical de-watering behaviour captured by the model, we
first present solutions for some idealized fixed-rate and fixed-load compression
problems. We use the idealized power-law material functions of §III B, choos-
ing n = m, and initialize with φ0 = 0.05. With fixed-rate compression, the
characteristic speed U is specified; the parameter γ can then be thought of
as gauging the rate of de-watering. For the fixed-load problem, on the other
hand, the load on the piston is prescribed, leading us to set σ = R, where R
is the ratio of the piston load to p∗ (assumed greater than unity, so that the
solid is forced to collapse). The characteristic piston speed is left unset; we
then select this scale so that γ = 1. In either case, the remaining parameters
from the constitutive law are ε and λ, measuring the importance of the bulk
viscosity and elasticity, respectively.

A. Fixed-rate compression

We begin by reconsidering the interrupted compression sequences of §II B
and II C. Now, the descent of the permeable piston can differentially com-
pact the solid to raise the load at the top above the compressive yield stress
expected from the mean solid fraction φ(t). In the absence of elastic effects
and bulk viscosity, the solid compacts uniformly when the rate of de-watering
is low (the parameter γ is large), as in §II B and II C. But with more rapid
de-watering (γ � 1), the solid builds up significantly against the piston whilst
remaining at the initial fraction over the bulk of the layer beneath (e.g. Ref.

15



FIG. 6. Interrupted compression curves for differential compaction with ε = 10−2,

γλ/ε = 0.316, a = 3, n = m = 2 and the values of γ indicated. (a) shows

the prescribed piston position h(t), along with a density plot of log10 φ for γ =

0.1; red contours indicate the yield surfaces where P = ΠY (φ). Two compression

curves are shown in (b) (offset from one another); the black dotted lines show

the corresponding quasi-static solution. Details of the loops arising during one

unloading-reloading cycle are shown in (c), with γ ranging from 0.1 (red) to 10

(blue), offset successively (by factors of 1.2 and 1.1 in the horizontal and vertical,

respectively) from the low-γ (red) loop for clarity.

27). Significant bulk viscosity (ε = O(1) or larger) mostly prevents the devel-
opment of such boundary-layer structure by assisting the diffusive spreading
of the solid distribution (as shown by15 and explored more fully including
elasticity in §V below).

In figure 6, we show an interrupted compression sequence for a material
with both elasticity and bulk viscosity. In particular, we choose ε = 10−2

and γλ/ε ≡ p∗/E∗ = 0.316, which leads to modest viscous and elastic effects
and compression behaviour like that illustrated in figure 1(a). By fixing
both ε and γλ/ε, but then varying γ, the theoretical problem corresponds
to an experiment in which a given material is compressed at different rates.
Solutions for varying de-watering rates (i.e. γ) are displayed in the figure
using the interrupted compression sequence prompted by the motion of the

16



FIG. 7. Differential compaction for ε = γ = 10−2, a = 3, n = m = 2 using a

constant piston speed up to t = 1
2 . Shown are density plots of velocity u(z, t) and

solid fraction φ(z, t) for (a) λ = 0.01 and (b) λ = 0.316. The red lines are the yield

surfaces, and the black dashed lines show the contours u = 2j ×10−3 for j = 1, ..., 4

to illustrate finer details not visible on this colour scale. Below, we plot time series

of (c) the mean, top and bottom solid fractions, and (d) piston load, for solutions

with λ = 10(j−6)/2 for j = 0, ..., 5 (from blue to red).

piston indicated in panel (a). At the lowest de-watering rate (γ = 10), the
layer remains spatially uniform and the compression curve matches up with
Π

Y
(φ) during the main compression sequence, and the translated elastic stress

curves F (φ) + constant over the unloading-reloading cycles (see panel (b)).
For higher de-watering rates (γ = 0.1), the layer differentially compacts

and the main compression curve shifts above Π
Y

(φ) (cf.15). Moreover, the
unloading-reloading cycles develop into loops. As the extent of these loops
depends on the rate of de-watering (panel (c)), however, this feature cannot
correspond to that observed in the relatively slow experiments of §II C. De-
spite the differential compaction arising during the faster compressions, the
layer largely plugs up once each unloading begins, and then yields once more
after the reloadings have completed (see the yield surfaces plotted in panel
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FIG. 8. A similar plot to figure 7, but with a parabolic piston motion for t < 1.

(a)).
More differential compactions are shown in figures 7 and 8. In these two

examples, fixed-rate compression occurs until the layer depth has halved, at
which point the piston halts and the solid is left to relax under any remain-
ing elastic stresses. By design, the constitutive model should capture both
the phase of dynamic compression and the subsequent elastic recoil. In fig-
ure 7, the piston speed is constant until it stops abruptly at t = 1

2
so that

h = max(1− t, 1
2
); the second example shows a parabolic piston motion with

compression trailing off more smoothly up to t = 1: h = 1− t+ 1
2
t2 for t ≤ 1,

and h = 1
2

for t > 1. Solutions for various values of λ are presented, with
ε = γ = 10−2 and n = m = 2. Such choices correspond to compression
tests with certain fixed rates, conducted on materials with different degrees of
elasticity (i.e. λ). To ensure that the F (φ) ≡ ε(γλ)−1φ2 curve remains above
ΠY (φ) ≡ φ2, we demand λ < 1.

Without elasticity (λ → 0), some differential compaction arises, as illus-
trated by the solutions with λ = 0.01, for which elastic effects are minor.
Once the piston halts, the layer quickly plugs up, with a yield surface de-
scending from the piston. As elastic effects become more significant (larger
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λ), the degree of differential compaction during the compression phase in-
creases; see panels (b) and (c) of the two figures. However, once the piston
stops, the stored elastic stresses subsequently relax, decompressing the com-
pacted boundary layer and eventually leaving a more uniform state than that
reached without elasticity (panel c). The final elastic relaxation becomes pro-
tracted for the higher values of λ, unlike the viscoplastic layer which stops in
its relaxed state instantaneously. The dashed contours of relatively small solid
velocity included in panels (a) and (b) of the two figures highlight the residual
motion that accompanies this relaxation (some of which is purely elastic once
P falls below Π

Y
).

With an abrupt halt to piston motion (figure 7), there is a sudden switch
from compression under the piston to the elastic recovery. For an almost vis-
coplastic material, this switch is accompanied by a sharp fall in load as the
viscous contribution to the solid stress is suddenly removed. Elasticity coun-
ters this drop in stress somewhat, although the load still falls sharply. When
the piston slows more gradually (figure 8), the viscous stress on the piston
declines much less precipitously and any elastic recovery begins whilst the
piston is still moving down. The sharp switch from compression to recovery
is therefore avoided by bringing the piston to a smooth halt.

The enhancement of differential compaction by elasticity (increasing λ) is
particularly noticeable with larger bulk viscosities (i.e. ε). In the viscoplastic
model for ε = O(1), differential compaction is compensated by viscous spread-
ing, with the solid remaining uniform even under relatively rapid compression
(γ � 1)15. With sufficient elasticity, however, a compacted boundary layer
can nevertheless appear underneath the piston as it descends, although most
of this structure disappears under a protracted elastic recoil once the piston
stops. These features are illustrated in figure 9(a), which plots the top and
bottom solid fractions for solutions with (γ, ε) = (10−2, 1) and different λ (i.e.
the same γ but a larger ε than in figures 7 and 8). Without elasticity (the lower
λ, blue curves), little differential compaction arises, with the solid fraction at
the bottom closely tracking that at the top. By contrast, a sharp boundary
layer develops as λ in increased. The boundary layer of the solution with
λ = 25 is shown in more detail in figure 8(b,c), and compared to analytical
results derived from the boundary-layer theory outlined in §V. As illustrated
by the final panel of this figure, the boundary layer forms for such parameters
settings because the solid stress is dominated by elasticity, with P approaching
the translated elastic stress function, F = ε(φm − φm0 )/(mλγ) + φn0 . Conse-
quently, the problem becomes governed by the nonlinear diffusion equation in
(21), with a relatively small diffusivity D, setting the stage for the appearance
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FIG. 9. Parabolic compression solutions with ε = 1, γ = 0.01 and a = n = m = 2.

Time series of the bottom and top solid fractions, φ(0, t) and φ(h, t), are plotted

in (a) for λ = 0.01, 0.1, 1, 4, 12.5 and 25 (blue to red). Also shown are the mean

solid fraction φ(t) (dashed) and the prediction in (36) (red dots). For the solution

with λ = 25, we present (b) density plots of u(z, t) and φ(z, t), and the profiles of

(c) φ(z, t) and (d) P(z, t) at the times indicated by the dotted lines in (b). The

(red) dots in (c) show the prediction from (33), based on the value of φT from the

numerical solution, and the (red) dashed lines in (d) show the translated elastic

stress function F = ε(φm − φm0 )/(mλγ) + φn0 .

of a boundary layer.

B. Fixed loading

Figure 10 shows a suite of solutions to the fixed-load compression problem.
In these solutions, at t = 0 the top load is suddenly increased from P(h, t <
0) = Π

Y
(φ0) up to P(h, t > 0) = R = 25Π

Y
(φ0) (i.e. σ(t > 0) = 1),

prompting differential compaction. Figure 10(a-c) presents solutions holding
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FIG. 10. Fixed-load compression (γ = 1) with a = n = m = 2 and R = 25ΠY (φ0).

In (a-c), ε−1λ = 1
4 and ε = 10j for j = −4, −3, ..., 2 (blue to red). Shown are

(a) h(t), (b) spatial profiles of φ(z, t) when h ≈ 0.69, and (c) φT (t) = φ(h, t) and

φ(0, t). The horizontal lines in (a) and (c) show (φE , hE) (dotted) and (h∞, φ∞)

(dot-dashed); the corresponding curves show (37) for the elastic and plastic limits.

Also shown in (b) (shifted to the right for clarity) are predictions from (33), based

on the values of φT from the numerical solutions. Panel (d) shows a similar plot to

(c), but for solutions with ε = 0.01 and 4ε−1λ = 1, 1
3 , 10−1, 10−2 and 10−3 (from

red to blue). The inset shows h(t).

p∗/E∗ ≡ ε−1λ = 1
4

fixed and varying ε; solutions with ε = 0.01 and varying λ
are presented in figure 10(d). Because γ is scaled to 1 in this problem (see
the pre-amble to §IV) and ε ∝ h−20 , the former (panels a-c) corresponds to
a fixed-load problem with, for example, a given material but varying initial
depth. The latter (panel d) corresponds to a particular loading problem for
materials with differing elastic moduli.

The sudden loading causes the piston to descend abruptly and a compacted
boundary layer develops underneath. This is illustrated in figure 10(a,c,d),
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which plots time series of h(t) and the top and bottom solid fractions for
the two series of solutions, and figure 10(b), which shows the structure of
the boundary layers for the problem with fixed λ/ε. In the latter panel, the
boundary-layer profiles of φ(z, t) are again compared with the predictions of
the theory in §V.

The time series of solid fraction (panels (c) and (d)) display distinctive
features reflecting the degree to which elasticity impacts the loading problem:
except at the lowest values for λ, the boundary layer becomes dominated
initially by the elastic stress, with the top solid fraction adjusting to the value
φ

E
for which the load is balanced by the elastic stress function:

F (φ
E

)− F (φ0) + Π
Y

(φ0) = R, (25)

or, given the specific parameters used here,

ελ−1(φ2
E
− φ2

0) = 24. (26)

For the smallest values of λ, however, the elastic stress does not limit the
compaction in the boundary layer, which instead becomes controlled by the
compressive yield stress. The top solid fraction then approaches the value
set by Π

Y
(φ∞) = R, or φ∞ = 5φ0. These two features are illustrated in

figure 10(c,d), where the redder curves of φ(h, t), with higher λ or ε, first level
off at φ

E
, whereas the blue curves, with lower λ and ε, progress with little

interruption up to φ∞.
Somewhat later, the piston slows down, prompting elastic effects to de-

crease relative to plastic ones (cf. V). If, at this stage, the solid still remains
compacted against the piston (so that φ(0, t) remains at φ0), the boundary
layer accordingly adjusts its structure from that controlled by elasticity to
that imposed by the yield stress (see the purple solutions for φ(h, t) with in-
termediate values for ε and λ in figure 10(c), and the redder curves for larger
λ in figure 10(d)). Somewhat later, the boundary layer reaches the bottom,
φ(0, t) catches up to φ(h, t), and a spatially uniform final state is approached
with φ = φ∞ and h = h∞ ≡ φ0/φ∞ = 1

5
, for the specific case considered here.

For the highest values of λ and ε (the red curves in figure 10(a-c)), the
boundary layer reaches the bottom before compressive yield stresses take hold.
A different spatially uniform state then emerges with φ ≈ φ

E
and h = h

E
=

φ0/φE
. Eventually the stress again relaxes, however, and the layer approaches

the same final state as for smaller ε. That equilibrium, with φ = φ∞, is
demanded regardless of the parameters settings (provided F > Π

Y
) because

the load always raises the stress above Π
Y

(φ) and the solid is unable to fall
back below that yield stress during compaction. The final approach to steady
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state is therefore always controlled by the plastic stress, and the corresponding
nonlinear diffusion equation in (21). This is unlike the fixed-rate problem, for
which the layer begins to unload when the piston halts, allowing the stress
to fall below Π

Y
which freezes into place the differentially compacted solid

distribution.

V. BOUNDARY-LAYER THEORY

A useful exercise in understanding the dynamics captured by the model and
interpreting the impact of parameter variations is to consider the limit in which
the descent of the piston generates a narrow compacted layer just underneath.
Such boundary layers were considered in15 for the plastic problem. For the
current model, we first transform into a frame moving with the piston by
setting ζ = h − z; in this frame, spatial derivatives must be large and the
mass conservation equation becomes

[(u− ḣ)φ]ζ ≈ φt. (27)

In principle, we should neglect the right-hand side of this equation in com-
parison to the left-hand side, and then integrate to find that (u− ḣ)φ is some

function of time alone. However, u = ḣ at ζ = 0, but (φ, u) → (φ0, 0) below
the boundary layer, which offer conflicting choices for the constant. In partic-
ular, because ζ = 0 is contained within the boundary layer the first condition
is potentially the more natural, but this implies u ∼ ḣ throughout the finely
structured region and is inconsistent with the stationary layer underneath.
The issue is connected to how, after a finite time, an O(φ0) amount of solid is
compressed into the relatively thin boundary layer, and so the solid fraction
there is necessarily much greater than φ0 by a factor of order δ−1, where δ
measures the thickness of the boundary layer.

To resolve this conflict, we avoid neglecting the right-hand side of (27),
and instead evaluate it perturbatively. More specifically, the quasi-static
boundary-layer structure is expected to take the form,

S(φ) = S(φT ) + ζ, φT (t) = φ(0, t), (28)

for some function S(φ). For the perfectly plastic or elastic problems, satisfying
(21), we have explicitly S(φ) ≡

∫
φ−1D(φ)dφ. This functional form implies

that

φt = φ̇TS
′(φT )φζ &

∫ ζ

0

φtdζ = −φ̇TS ′(φT )(φT − φ). (29)
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But mass conservation demands (since φ→ φ0 for ζ → h(t)),

0 =
d

dt

∫ h

0

φ(ζ, t)dζ =

∫ h

0

φtdζ + ḣφ0. (30)

Hence

u = ḣ+ φ−1
∫ ζ

0

φtdζ ≈
ḣφT (φ− φ0)

φ(φT − φ0)
, (31)

which now satifies both of the originally conflicting conditions, and reduces
to u ∼ ḣ if (φ, φT )� φ0.

Next, since P = Π
Y

(φ) or P = F (φ) − F (φ0) + Π
Y

(φ0) in the plastic or
elastic boundary layers, we set

DP
Dt
∼ Pζ
φζ

Dφ

Dt
∼ ḣ2φ0φ

2
T (φ− φ0)

γKφ2(φT − φ0)2
. (32)

Assuming P > Π
Y

, we may now differentiate the constitutive law and rear-
range the resulting expression into

Kφ0

{
Λ

φ2

[
εφζ −

λḣφT (φ− φ0)

EK(φT − φ0)

]}
ζ

∼ 1− φ0

φ
− (φT − φ0)

ḣφT
γKΠ

Y

′φζ . (33)

Omitting the left-hand side furnishes a boundary-layer theory for the perfectly
plastic problem; neglecting the right-hand side gives the elastic version. In
all cases, we must solve (33) subject to φ(0, t) = φT and φ(h, t) = φ0, and

then feed the result into the mass conservation constraint
∫ h
0
φdζ = φ0. For

fixed piston position, h(t), this procedure determines φT (t). For fixed load,
on the other hand, the top boundary condition demands P = RΠ

Y
(φ0) with

either P ∼ Π
Y

(φT ) or P ∼ F (φT ) − F (φ0) + Π
Y

(φ0), both of which fix the
solid fraction at the top. The mass conservation constraint then corresponds
to a differential equation for the piston position because ḣ appears explicitly
in (33).

Away from the plastic and elastic limits, (33) offers a means of deciphering
the controlling factors for the solid distribution and determining the boundary-
layer thickness δ. For the viscoplastic model, the action of the bulk viscosity
in delocalizing the boundary layer is evidenced by the first term. The second,
elastic contribution is similar to that from the compressive yield stress (final
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term on right-hand side), although its opposite sign is indicative that larger
λ solutions should show a sharpening of the boundary layer relative to the
viscoplastic theory, as observed numerically. Moreover, the different depen-
dence of these terms on the instantaneous compression rate ḣ emphasizes how
elasticity is promoted at faster rates and plasticity for lower rates.

The prediction of (33) for the solid distribution appears along with the
numerical computations in figures 9 and 10, adopting the instantaneous value
of φT computed numerically. The solution in figure 9 is, in fact, controlled
largely by elastic stresses, as is illustrated by the final panel of that figure
which demonstrates that P(z, t) remains close to the (translated) elastic stress
function F = ε(φm−φm0 )/(mλγ)+φn0 during the compression. In this situation,
the main balance in (33) is between the first two terms, leading to a chacteristic

boundary layer scale of δ ∼ εEK/(λ|ḣ|). For the solution in figure 9, this scale
is δ ∼ [25(1−t)]−1 which roughly matches the half-width of the boundary-layer
profiles displayed in panel (c).

For the perfectly plastic limit (ε = λ = 0, omitting the left-hand side of
(33)), we obtain

ḣφT (φ− φ0) = (φT − φ0)Dφζ , (34)

with D = γφKΠ
Y

′ (indicating that the characteristic boundary layer thickness

is now δ ∼ γKΠ
Y

′/|ḣ|). An integral of (34) over the layer gives

−ḣφTφ0(1− h) = (φT − φ0)

∫ φT

φ0

D(φ)dφ. (35)

For the perfectly elastic limit (neglecting the right-hand side of (33)), we
recover exactly the same result, but with D ≡ ελ−1EK, as in (22). Note that,
if φKΠ

Y

′ = constant or EK = 1 (i.e. a = n or a = m), then the diffusivity
D is constant in either limit (and equal n or ε/λ), and so

φT = φ0

[
1 + 1

2
T +

√
T
(
1 + 1

4
T
)]
, (36)

for fixed rate with T = −D−1ḣ(1− h), or

h = 1− (φT − φ0)

√
2Dt

φTφ0

, (37)

for fixed load.
A key limitation in these results is the condition φ(h, t) = φ0, which fails

when the boundary layer reaches the bottom. Equation (33) also cannot
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FIG. 11. Fitted constitutive functions for the pulp suspension, showing (a) PY (φ)

and E(φ), and (b) permeability. The symbols show the actual experimental mea-

surements; the solid red lines are the fits. The dashed red line in (a) shows the fit

for PY multiplied by a factor of twenty. The lighter blue symbols denote results

obtained from the low-load tests reported by18.

capture any final elastic recoil: in this setting ḣ = 0 and we must omit the
right-hand side in view of the yield condition, leaving only φζζ = 0 (and
implying that the time derivatives have not been dealt with adequately). Both
limitations are visible in figure 9(b), which includes the prediction in (36):
as time advances, the boundary layer thickens and the adjustments in solid
fraction reach the base, both of which cause the prediction to diverge from the
numerical solution with time. Moreover, for t > 1, the piston stops with the
boundary-layer theory predicting that φT returns to φ0 (the theory effectively
assumes that the medium has infinite depth, and so the predicted solid fraction
at the top is allowed to fall below φ = h−1). The latter issue also plagues the
predictions for the fixed load problems shown in figure 10, which compares
the numerically computed h(t) with the result from (37), taking D = ελ−1

(panel (a)) or D = 2 (panel (a) and the inset to (d)).

VI. RAPID DE-WATERING OF CELLULOSE SUSPENSIONS

A. Experimental Description and materials

The experimental apparatus is a filtration device that uses a MTS 858
tabletop material tester operated remotely by a control unit. The MTS pushes
a permeable piston into a cylinder of radius 6.7cm holding the suspension. The
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cylinder is positioned on top of a load cell that measures σ̂(t̂). The piston fits
closely into the cylinder, and a friction force between the piston seals and
the walls of 6500Pa is subtracted from the load measurements during fixed-
rate compressions. The unit is capable of providing compression loads of
1.0− 1.2MPa.

The ĥ(t̂) compression profile chosen for the dewatering experiments is
parabolic, which has the benefit of gradually stopping the piston whilst start-
ing with a relatively high speed. With a LABVIEW interface, we specify
initial suspension height h0, end height h0hend, and the initial compression
rate U = −ḣ0, so that the dimensionless height of the piston h = ĥ/h0 is
given by

h =

{
1− t+ t2/[4(1− hend)], t ≤ 2(1− hend),
hend, 2(1− hend) < t,

(38)

written in terms of the same dimensionless time t = (U/h0)t̂ as in (13). This
imposed height profile thus has the same form as that considered theoretically
in figure 8. For the dewatering tests, we set h0 = 41.4cm and h0hend = 5.6cm,
leaving the initial compression rate as the main parameter. The interface
was also used to calibrate the network’s elastic response, by performing slow
compressions interrupted by unloading-reloading cycles (see §II C). The cycles
were performed by unloading the suspension to 66% of the load at which the
piston reversal started, fixing the piston speed at ±1µm/s.

The cellulose suspension is composed of a northern bleached softwood Kraft
wood pulp, consisting of a mixture of Scots Pine and Norway Spruce35. The
suspensions are made from dried pulp sheets, and prepared to an initial con-
centration of φ0 ≈ 0.025 for the dewatering tests. Calibrations of the com-
pressive yield stress and permeability were undertaken in19, resulting in the
fits,

PY (φ) = 6.20× 105φ1.87(1− φ)−3.83 Pa (39)

and
k(φ) = 2.67× 10−13φ−1 lnφ−1e−20.38φm2, (40)

as shown in figure 11. The bulk viscosity scaling was also fitted to be η∗ =
2.89 × 107 Pa19, based on tests conducted at lower compression rates than
those we report below. The unloading-reloading cycles conducted here further
provided the bulk modulus E(φ), also included in figure 11(a). The closed
squares are measured by the MTS; the open circles were determined by an
additional low-load experimental apparatus using the same protocol (slow
compaction, and partial unloading)18. The fit to the combined data is

E(φ) = 1.08× 108φ2.71(1− φ)−0.688 Pa. (41)
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FIG. 12. Compressions for cellulose fibres performed at varying initial velocities

(U = 5, 15, ..., 55 mm/s) with the same initial and final heights. Panel (a) shows

experimental results. Each test is conducted four times; the points show the average

and the error bars band a standard deviation. Panel (b) shows the corresponding

results for the theoretical model with (solid) and without (dotted) elasticity. The

vertical dashed line indicates when the piston stops, and the black line shows the

load assuming that compression arises quasi-statically along the PY −curve.

Although the fitted forms for PY (39) and E (41) look quite different, the actual
functional forms are remarkably similar, but for a constant factor of about 20,
as can be seen in figure 11. This similarity suggests a common physical origin
for the plastic and elastic components of the stress in this suspension, such as
might arise if the friction incurred by plastic re-arrangements was controlled
by the elastic normal forces arising from the bending or collapse of fibre walls
(cf.19).

Below, we present the experimental results for dynamic dewatering. When
we compare these observations with theory, and employ dimensionless vari-
ables, we use a nominal solid fraction φ∗ = 0.1 in order to select the char-
acteristic scales p∗ = P

Y
(φ∗), E∗ = E(φ∗) and k∗ = k(φ∗). In terms of the

dimensionless groups defined in §III that then emerge, we note that the ex-
periments are conducted with parameters ε = 13.5,

4× 10−3 ≤ γ = 0.049(U/U∗)
−1 ≤ 0.049,

15.4 ≤ λ = 15.4(U/U∗) ≤ 185,

where U∗ = 5mm/s. Thus, without elasticity, we expect dewatering to be
relatively rapid (γ � 1) but the bulk viscosity to significantly smooth the
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solid distribution (ε is large). However, elasticity is also likely to be important
(λ� 1).

B. Dynamic de-watering

Experimental compression curves were collected for a variety of initial pis-
ton velocities U . Sample results are presented in figure 12. This figure plots
recorded load against time, both dimensionless. As the initial compression rate
U increases, the load rises more steeply, then falls as the piston slows down.
Visual observations of the suspension in the cup indicate that the steepening
rise of the load is associated with enhanced differential compaction, with pulp
packing into a boundary layer under the permeable piston, as observed in
other studies36–38. Eventually, the boundary layer stops packing as the piston
decelerates and the load drops, much as in the theoretical solutions presented
in §III.

Figure 12 also reports matched theoretical results, both with and without
elasticity. For the lowest compression rates there is only a minor difference
between the two versions of the model, with the elastic theory performing
slightly better in reproducing the experiment. This reflects the conclusions
of15,19, who found that the inclusion of a bulk viscosity alone was effective
in allowing the model to reproduce experimental dewatering behaviours at
these compression rates. Indeed, if neither elasticity nor a viscous solid stress
are included (λ = ε = 0) and P = Π

Y
(φ), the model predicts that the

solid immediately packs to unphysically high concentrations underneath the
piston, generating excessive loads, at the compression speeds used in Figure
12 (cf.15,19).

For faster compressions, the elastic version of the model noticeably outper-
forms the viscoplastic model in reproducing both the shape and magnitude
of the load curves in Figure 12. In particular, the viscoplastic model pre-
dicts that the load rises abruptly at the earliest times, but then climbs more
slowly; the smoother initial rise in σ̂(t) for the elastic solutions, followed by
an elevated load for 0.1 < t < 1.1, more closely matches the experimental
results.

The final relaxation of the stress is also poorly reproduced by the model
without elasticity: with λ → 0, the model load abruptly stabilizies at its
final value when the piston stops. The experiments display a more gradual
trend, however, more like the elastic relaxation of the model with finite λ.
That said, the theoretical results with the calibrated values for the material
functions display a more pronounced final relaxation than the experiments,
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FIG. 13. Solid velocities, u(z, t) = û/U , as densities on the (t, z)−plane for U = 1.5,

10, 30 and and 55mm/s (from left to right). For each column, particle tracking

measurements are shown on the top, the predictions of the elasto-viscoplastic theory

in the middle, and those of the viscoplastic model on the bottom. The vertical

dashed lines show where the piston stopped, and the red contours in the theoretical

plots show the yield surfaces. The PTV data include the velocities computed for

the piston.

and the agreement between the two sets of load curves is only qualitative.

C. Particle tracking

Although the elastic-viscoplastic model performs better than the viscoplas-
tic version of the model in reproducing load curves, the improvement is not
dramatic, leading one to wonder whether the addition of elasticity is truly
key. However, for the relatively significant values of the bulk viscosity found
for the pulp suspension (for which ε = O(1)), the purely viscoplastic model
is expected to predict that little differential compaction should arise during
compression (see §IV A). But provided elastic effects are sufficiently strong,
a boundary layer can build underneath the piston as it descends. This is,
indeed, what is observed experimentally, with the suspension deforming far
from uniformly in space.

To pursue this detail further, we performed particle tracking on the solid
during the compression tests. The tracking tests were performed using a
smaller range of compression and initial solid fraction, with (h0, h0hend) ≈
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(5.4, 2)cm and φ0 ≈ 0.02, to ease the identification of the tracer particles.
Sample results are shown in figure 13, which plots the observed solid veloci-
ties as densities over the (t, z)−plane. Also displayed are the predictions of
the elasto-viscoplastic and purely viscoplastic models. At relatively low com-
pression rate (left-hand column), the two versions of the model are largely in
agreement and predict similar solid velocities to those observed (which again
concides with the findings of15,19). The only noteworthy discrepancy is that
the visco-plastic model predicts a sudden onset of motion throughout the solid
(a feature connected with the abrupt initial rise of the load seen in figure 12
for the dotted curves). Instead, with elasticity, a signal descends through
the layer, activating motion. The particle tracking data supports the latter
behaviour, although the measurements are not especially definitive.

As the dewatering speed U is increased (progressing from left to right in
figure 13), this discrepancy becomes more obvious, with the solid velocity
becoming strongly confined to a layer underneath the piston for both the
particle tracking measurements and the elastic model. This feature reflects
the build up of a compacted boundary layer, as found in our general theoretical
exploration of the model when the bulk solid viscosity is either small (ε� 1)
or if elasticity is important (λ = O(1) or larger); see §IV. For the parameter
settings expected for the experiments, the bulk viscosity is relatively large
(ε = O(10)). As a result, the solid distribution in the purely viscoplastic
model is excessively smoothed by the bulk solid viscosity, and no boundary
layer emerges if λ → 0. Instead, the solid velocity extends down to the
base of the layer immediately from the beginning of the piston’s descent,
and the space-time plot of u looks similar for all the different compression
speeds (see the bottom row of panels in figure 13). By contrast, the particle
tracking measurements reveal definitively that the differential solid motion
is dependent on piston speed and becomes confined to a boundary layer for
higher compression rates, in agreement with the elasto-viscoplastic model (top
and middle rows in figure 13).

VII. DISCUSSION

In this paper we have explored a model for the compaction of a two-phase
medium in which the solid is allowed to deform elasto-viscoplastically. The
model borrows a constitutive law for the solid stress from theory of single-
phase complex fluids, and couples that with traditional formulations for two-
phase media. Previous models for the compression of soils or colloidal suspen-
sions often prescribe the solid stress as a material function of the local solid
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concentration, which in the two-phase formulation leads to similar mathe-
matical formulations, with the elastic or plastic origin of the stress becoming
secondary. By contrast, our current model distinguishes between purely elas-
tic or plastic deformation, and accommodates a solid viscous response that
has proved previously to be effective in model comparisons with experiments
for certain media. The model also permits one to examine the dynamics of a
medium that is first compressed and then unloaded, which naturally differenti-
ates elastic recovery from the hysteresis originating from plastic deformation.

To interrogate the theoretical model, we considered one-dimensional com-
pression and unloading with either fixed rate or fixed load. In such problems,
boundary layers of compacted solid can appear against the permeable walls
when compression is relatively fast. We provided further analysis of such sit-
uations, constructing some asymptotic solutions or reductions of the model
equations that can be used to further dissect the problem.

We then confronted the model with the reality of an experiment conducted
using a suspension of cellulose fibres. Earlier experimental investigations with
such materials had shown the need for a solid viscous-like stress to explain
the compaction dynamics. The tests that we conducted here used faster rates
of compression, and also considered unloading, both aimed at promoting or
identifying elastic effects. The experiments were in qualitative agreement
with the theoretical model, once certain material functions (the dependence
of the permeability, compressive stress, elastic bulk modulus and viscosity)
were calibrated. In particular, using particle tracking of tracers in the solid,
we were able to demonstrate that the elasto-viscoplastic model was capable of
reproducing the differential spatial compaction, as well as the net load exerted
on the piston performing the compression.

Despite this qualitative agreement, there are quantitative discrepancies be-
tween the model and experiment. In view of the relative crudeness of the
model, which was posed in the interest of simplicity, this is perhaps not so
surprising. One obvious possible origin of the lack of quantitative agreement
is the bulk viscosity function that we adopted, Λ̂ = η∗φ

2. Unlike our other
material functions, the dependence of this quantity on solid fraction has not
been directly measured. Instead, the functional form was assumed, and the
fitting parameter η∗ determined by comparing model solutions for dynamic
dewatering with experiments. Part of the discrepancy between theory and
experiment could therefore originate from a failure to calibrate correctly the
φ−dependence of the rate-dependent part of the solid stress. A better ap-
proach would be to perform additional time-dependent tests to calibrate this
function properly, as is typically done in rheometry of complex fluids.

A more serious issue is the failure to explain the loops that appear in
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quasi-static compression curves that are interrupted by cycles of unloading and
reloading. Measurements for cellulose fibre suspensions (§II C;18) demonstrate
that the cycle creates a stress-strain loop that appears to be independent of
rate, much as for other materials (cf.8,14,39–42). Only with differential spatial
compaction do loops appear for the model, and even then, they are rate-
dependent. The same issue has been encountered in soil mechanics, where
attempts have been made to account for the loop by introducing limitations
on elastic strains at the granular level43–46. However, these modifications are
made to constitutive descriptions that are rather more complicated than that
considered here, and it is not clear how such ideas could be incorporated into
the present model.
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42(4):541–576, 1992.
44 A Niemunis and I Herle. Hypoplastic model for cohesionless soils with elastic

strain range. Modelling and Computation of Materials and Structures, 2(4):279–

299, 1997.
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